Recessive-interfering mutations in the gibberellin signaling gene SLEEPY1 are rescued by overexpression of its homologue, SNEEZY.

Proc Natl Acad Sci U S A

U.S. Department of Agriculture-Agricultural Research Service and Department of Crop and Soil Science and Graduate Program in Molecular Plant Sciences, Washington State University, Pullman, WA 99164-6420, USA.

Published: August 2004

This article reports the genetic interaction of two F-box genes, SLEEPY1 (SLY1) and SNEEZY (SNE), in Arabidopsis thaliana gibberellin (GA) signaling. The SLY1 gene encodes an F-box subunit of a Skp1-cullin-F-box (SCF) E3 ubiquitin ligase complex that positively regulates GA signaling. The sly1-2 and sly1-10 mutants have recessive, GA-insensitive phenotypes including delayed germination, dwarfism, reduced fertility, and overaccumulation of the DELLA proteins RGA (Repressor of ga1-3), GAI (GA-Insensitive), and RGL2 (RGA-Like 2). The DELLA domain proteins are putative transcription factors that negatively regulate GA signaling. The requirement for SLY1 in GA-stimulated disappearance of DELLA proteins suggests that GA targets DELLA proteins for destruction via SCF(SLY1)-mediated ubiquitylation. Overexpression of SLY1 in sly1-2 and sly1-10 plants rescues the recessive GA-insensitive phenotype of these mutants. Surprisingly, antisense expression of SLY1 also suppresses these mutants. This result caused us to hypothesize that the SLY1 homologue SNE can functionally replace SLY1 in the absence of the recessive interfering sly1-2 or sly1-10 genes. This hypothesis was supported because overexpression of SNE in sly1-10 rescues the dwarf phenotype. In addition to rescuing the sly1-10 dwarf phenotype, SNE overexpression also restored normal RGA protein levels, suggesting that the SNE F-box protein can replace SLY1 in the GA-induced proteolysis of RGA. If the C-terminal truncation in the sly1-2 and sly1-10 alleles interferes with SNE rescue, we reasoned that overexpression of sly1-2 might interfere with wild-type SLY1 function. Indeed, overexpression of sly1-2 in wild-type Ler (Landsberg erecta) yields dwarf plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC515128PMC
http://dx.doi.org/10.1073/pnas.0404287101DOI Listing

Publication Analysis

Top Keywords

sly1-2 sly1-10
16
della proteins
12
sly1
9
gibberellin signaling
8
recessive ga-insensitive
8
replace sly1
8
dwarf phenotype
8
overexpression sly1-2
8
overexpression
6
sne
6

Similar Publications

Recessive-interfering mutations in the gibberellin signaling gene SLEEPY1 are rescued by overexpression of its homologue, SNEEZY.

Proc Natl Acad Sci U S A

August 2004

U.S. Department of Agriculture-Agricultural Research Service and Department of Crop and Soil Science and Graduate Program in Molecular Plant Sciences, Washington State University, Pullman, WA 99164-6420, USA.

This article reports the genetic interaction of two F-box genes, SLEEPY1 (SLY1) and SNEEZY (SNE), in Arabidopsis thaliana gibberellin (GA) signaling. The SLY1 gene encodes an F-box subunit of a Skp1-cullin-F-box (SCF) E3 ubiquitin ligase complex that positively regulates GA signaling. The sly1-2 and sly1-10 mutants have recessive, GA-insensitive phenotypes including delayed germination, dwarfism, reduced fertility, and overaccumulation of the DELLA proteins RGA (Repressor of ga1-3), GAI (GA-Insensitive), and RGL2 (RGA-Like 2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!