Human immunodeficiency virus type 1 (HIV-1), feline immunodeficiency virus (FIV), and Moloney murine leukemia virus (MoMLV) integrases were stably expressed to determine their intracellular trafficking. Each lentiviral integrase localized to cell nuclei in close association with chromatin while the murine oncoretroviral integrase was cytoplasmic. Fusions of pyruvate kinase to the lentiviral integrases did not reveal transferable nuclear localization signals. The intracellular trafficking of each was determined instead by the transcriptional coactivator LEDGF/p75, which was required for nuclear localization. Stable small interfering RNA expression eliminated detectable LEDGF/p75 expression and caused dramatic, stable redistribution of each lentiviral integrase from nucleus to cytoplasm while the distribution of MoMLV integrase was unaffected. In addition, endogenous LEDGF/p75 coimmunoprecipitated specifically with each lentiviral integrase. In vitro integration assays with preintegration complexes (PICs) showed that endogenous LEDGF/p75 is a component of functional HIV-1 and FIV PICs. However, HIV-1 and FIV infection and replication in LEDGF/p75-deficient cells was equivalent to that in control cells, whether cells were dividing or growth arrested. Two-long terminal repeat circle accumulation in nondividing cell nuclei was also equivalent to that of LEDGF/p75 wild-type cells. Virions produced in LEDGF/p75-deficient cells had normal infectivity. We conclude that LEDGF/p75 fully accounts for cellular trafficking of diverse lentiviral, but not oncoretroviral, integrases and is the main lentiviral integrase-to-chromatin tethering factor. While lentiviral PIC nuclear import is unaffected by LEDGF/p75 knockdown, this protein is a component of functional lentiviral PICs. A role in HIV-1 integration site distribution merits investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC506940PMC
http://dx.doi.org/10.1128/JVI.78.17.9524-9537.2004DOI Listing

Publication Analysis

Top Keywords

component functional
12
lentiviral integrase
12
lentiviral
10
ledgf/p75
8
cellular trafficking
8
trafficking diverse
8
diverse lentiviral
8
murine oncoretroviral
8
oncoretroviral integrase
8
functional lentiviral
8

Similar Publications

Perivascular adipose tissue: a central player in the triad of diabetes, obesity, and cardiovascular health.

Cardiovasc Diabetol

December 2024

Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.

Perivascular adipose tissue (PVAT) is a dynamic tissue that affects vascular function and cardiovascular health. The connection between PVAT, the immune system, obesity, and vascular disease is complex and plays a pivotal role in the pathogenesis of vascular diseases such as atherosclerosis, hypertension, and vascular inflammation. In cardiometabolic diseases, PVAT becomes a significant source of proflammatory adipokines, leading to increased infiltration of immune cells, in cardiometabolic diseases, PVAT becomes a significant source of proinflammatory adipokines, leading to increased infiltration of immune cells, promoting vascular smooth muscle cell proliferation and migrationpromoting vascular smooth muscle cell proliferation and migration.

View Article and Find Full Text PDF

Background: Extracellular vesicles (EVs) play a crucial role in intraspecies and interspecies communication, significantly influencing physiological and pathological processes. Outer membrane vesicles (OMVs) secreted by Gram-negative bacteria are rich in components from the parent cells and are important for bacterial communication, immune evasion, and pathogenic mechanisms. However, the extraction and purification of OMVs face numerous challenges due to their small size and heterogeneity.

View Article and Find Full Text PDF

Engineering immunity using metabolically active polymeric nanoparticles.

Trends Biotechnol

December 2024

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA. Electronic address:

Immune system functions play crucial roles in both health and disease, and these functions are regulated by their metabolic programming. The field of immune engineering has emerged to develop therapeutic strategies, including polymeric nanoparticles (NPs), that can direct immune cell phenotype and function by directing immunometabolic changes. Precise control of bioenergetic processes may offer the opportunity to prevent undesired immune activity and improve disease-specific outcomes.

View Article and Find Full Text PDF

Question: Cognitive-behavioural therapy (CBT) is frequently implemented for individuals with attention-deficit hyperactivity disorder (ADHD). It is still unknown which specific components are effective, because CBT is a complex intervention with several components. The objective of this review was to assess the efficacy of CBT components for ADHD.

View Article and Find Full Text PDF

Gegen Qinlian Decoction inhibits liver ferroptosis in type 2 diabetes mellitus models by targeting Nrf2.

J Ethnopharmacol

December 2024

Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, PR China, 230038; Institute of Surgery, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, PR China, 230038. Electronic address:

Ethnopharmacological Relevance: Type 2 diabetes mellitus (T2DM) is a metabolic disease that can lead to complications affecting multiple organs, including the liver. Gegen Qinlian Decoction (GQD) has demonstrated considerable efficacy in the management of T2DM and its complications in accordance with the tenets of modern Chinese medicine. However, the molecular mechanism by which GQD alleviates diabetic liver injury is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!