Flavopiridol, roscovitine, and other inhibitors of Cyclin-Dependent Kinases (CDK) inhibit the replication of a variety of viruses in vitro while proving nontoxic in human clinical trials of their effects against cancer. Consequently, these and other Pharmacological CDK inhibitors (PCIs) have been proposed as potential antivirals. Flavopiridol potently inhibits all tested CDKs and inhibits the transcription of most cellular and viral genes. In contrast, roscovitine and other purine PCIs inhibit with high potency only CDK1, CDK2, CDK5, and CDK7, and they specifically inhibit the expression of viral but not cellular genes. The levels at which purine PCIs inhibit gene expression are unknown, as are the factors which determine their specificity for expression of viral but not cellular genes. We show herein that roscovitine prevents the initiation of transcription of herpes simplex virus type 1 (HSV-1) genes but has no effect on transcription elongation. We further show that roscovitine does not inhibit the initiation or elongation of cellular transcription and that its inhibitory effects are specific for promoters in HSV-1 genomes. Therefore, we have identified a novel biological activity for PCIs, i.e., their ability to prevent the initiation of transcription. We have also identified genome location as one of the factors that determine whether the transcription of a given gene is inhibited by roscovitine. The activities of roscovitine on viral transcription resemble one of the antiherpesvirus activities of alpha interferon and could be used as a model for the development of novel antivirals. The genome-specific effects of roscovitine may also be important for its development against virus-induced cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC506918 | PMC |
http://dx.doi.org/10.1128/JVI.78.17.9352-9365.2004 | DOI Listing |
J Biochem Mol Toxicol
January 2025
Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
Researchers are actively looking for novel anticancer medications because cancer is one of the leading causes of mortality worldwide. A fascinating area of study in medicinal chemistry is the screening of antioxidants for novel anticancer medicines, as antioxidants have lately been used as therapeutic candidates to combat a variety of ailments in aerobic species. Additionally, pyrazole-based heterocycle synthesis is a productive approach to the drug development process.
View Article and Find Full Text PDFTissue Cell
December 2024
Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid (UFERSA), Mossoró, RN, Brazil. Electronic address:
Background: Several studies have evaluated different cell cycle synchronization methods to improve reprogramming efficiency aimed at wild species conservation. The six-banded armadillo is one of the wild mammals with significant ecological and biomedical interests but has not yet been evaluated for reprogramming purposes.
Objective: We investigated the effects in a time-dependent manner of serum starvation (SS; 0.
Int J Mol Sci
November 2024
Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
Front Mol Neurosci
November 2024
Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, Unidad de Biomedicina, FES-I, Universidad Nacional Autónoma de México, Mexico City, Mexico.
Chem Biol Drug Des
November 2024
Supramolecular and Catalysis Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, India.
Our research aims to design novel pyrimidine derivatives inspired by the common pyrimidine core found in many FDA-approved drugs. However, extensive prior research on the pyrimidine scaffold has made discovering new molecules more challenging. To overcome this obstacle, we employed a molecular hybridisation strategy, opting to hybridise tetralin and pyrimidine, recognising their potential in cancer therapeutics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!