Regulation of human airway ciliary beat frequency by intracellular pH.

J Physiol

Division of Pulmonary and Critical Medicine, University of Miami School of Medicine, Miami, FL 33136, USA.

Published: October 2004

pHi affects a number of cellular functions, but the influence of pHi on mammalian ciliary beat frequency (CBF) is not known. CBF and pHi of single human tracheobronchial epithelial cells in submerged culture were measured simultaneously using video microscopy (for CBF) and epifluorescence microscopy with the pH-sensitive dye BCECF. Baseline CBF and pHi values in bicarbonate-free medium were 7.2 +/- 0.2 Hz and 7.49 +/- 0.02, respectively (n = 63). Alkalization by ammonium pre-pulse to pHi 7.78 +/- 0.02 resulted in a 2.2 +/- 0.1 Hz CBF increase (P < 0.05). Following removal of NH4Cl, pHi decreased to 7.24 +/- 0.02 and CBF to 5.8 +/- 0.1 Hz (P < 0.05). Removal of extracellular CO2 to change pHi resulted in similar CBF changes. Pre-activation of cAMP-dependent protein kinase (10 microM forskolin), broad inhibition of protein kinases (100 microM H-7), inhibition of PKA (10 microM H-89), nor inhibition of phosphatases (10 microM cyclosporin + 1.5 microM okadaic acid) changed pHi-mediated changes in CBF, nor were they due to [Ca2+]i changes. CBF of basolaterally permeabilized human tracheobronchial cells, re-differentiated at the air-liquid interface, was 3.9 +/- 0.3, 5.7 +/- 0.4, 7.0 +/- 0.3 and 7.3 +/- 0.3 Hz at basolateral i.e., intracellular pH of 6.8, 7.2, 7.6 and 8.0, respectively (n = 18). Thus, intracellular alkalization stimulates, while intracellular acidification attenuates human airway CBF. Since phosphorylation and [Ca2+]i changes did not seem to mediate pHi-induced CBF changes, pHi may directly act on the ciliary motile machinery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1665258PMC
http://dx.doi.org/10.1113/jphysiol.2004.068171DOI Listing

Publication Analysis

Top Keywords

+/- 002
12
+/- +/-
12
cbf
11
+/-
10
human airway
8
ciliary beat
8
beat frequency
8
phi
8
cbf phi
8
human tracheobronchial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!