Previously, we reported that platelet-activating factor (PAF) stimulates higher G protein activation and a more robust Ca2+ mobilization in RBL-2H3 cells expressing carboxyl terminus deletion, phosphorylation-deficient mutant of PAF receptor (mPAFR) when compared with the wild-type receptor (PAFR). However, PAF did not provide sufficient signal for CC chemokine receptor ligand 2 (CCL2) production in cells expressing mPAFR. Based on these findings, we hypothesized that receptor phosphorylation provides a G protein-independent signal that synergizes with Ca2+ mobilization to induce CCL2 production. Here, we show that a mutant of PAFR (D289A), which does not couple to G proteins, was resistant to agonist-induced receptor phosphorylation. Unexpectedly, we found that when this mutant was coexpressed with mPAFR, it restored NF-kappaB activation and CCL2 production. PAF caused translocation of beta-arrestin from the cytoplasm to the membrane in cells expressing PAFR but not a phosphorylation-deficient mutant in which all Ser/Thr residues were replaced with Ala (DeltaST-PAFR). Interestingly, PAF induced significantly higher NF-kappaB and nuclear factor of activated T cells (NFAT)-luciferase activity as well as CCL2 production in cells expressing DeltaST-PAFR than those expressing PAFR. Furthermore, a Ca2+/calcineurin inhibitor completely inhibited PAF-induced NFAT activation and CCL2 production but not NF-kappaB activation. These findings suggest that the carboxyl terminus of PAFR provides a G protein-independent signal for NF-kappaB activation, which synergizes with G protein-mediated Ca2+/calcineurin activation to induce CCL2 production. However, receptor phosphorylation and beta-arrestin recruitment inhibit CCL2 production by blocking both NF-kappaB activation and Ca2+/calcineurin-dependent signaling pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M408035200 | DOI Listing |
Int Immunopharmacol
January 2025
Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China. Electronic address:
Objective: Aberrant 6-phosphofructo-2kinase/fructose-2,6-bisphoshatase 3 (PFKFB3) expression is tightly correlated with multiple steps of tumorigenesis; however, the pathological significance of PFKFB3 in macrophages in patients with rheumatoid arthritis (RA) remains obscure. In this study, we examined whether PFKFB3 modulates macrophage activation and promotes RA development.
Method: Peripheral blood mononuclear cells (PBMCs) from patients with RA, THP-1 cells, and bone marrow-derived macrophages from conditional PFKFB3-knockout mice were used to investigate the mechanism underlying PFKFB3-induced macrophage regulation of RA.
Background: Deficiency in the lysosomal enzyme, glucocerebrosidase (GCase), caused by mutations in the GBA1 gene, is the most common genetic risk factor for Parkinson's disease (PD). However, the consequence of reduced enzyme activity within neural cell sub-types remains ambiguous. Thus, the purpose of this study was to define the effect of GCase deficiency specifically in human astrocytes and test their non-cell autonomous influence upon dopaminergic neurons in a midbrain organoid model of PD.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA.
Background: Sepsis-associated encephalopathy (SAE) often results from neuroinflammation. Recent studies have shown that brain platelet-derived growth factor receptor β (PDGFRβ) cells, including pericytes, may act as early sensors of infection by secreting monocyte chemoattractant protein-1 (MCP-1), which transmits inflammatory signals to the central nervous system. The erythroblast transformation-specific (ETS) transcription factor Friend leukemia virus integration 1 (Fli-1) plays a critical role in inflammation by regulating the expression of key cytokines, including MCP-1.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
Upon exposure to inflammatory stimuli including TNF-α, endothelial cells are activated leading to the adhesion of monocytes to their surface. These events are involved in the pathophysiology of atherosclerosis. Since TNF-α activates the NF-κB pathway, which contributes to atherosclerosis, targeting this signaling pathway may help prevent the risk of developing the disease.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland.
: The stimulator of interferon genes (STING) is currently accepted as a relevant target for anti-cancer therapies. Besides encouraging results showing STING agonist-induced tumor growth inhibition, in some types of tumors the effect is less prominent. We hypothesized that higher STING levels in cancer cells and the possibility of its activation determine a greater anti-cancer response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!