One of the major developments in exploring structure activity relationships of the glycoprotein hormone family was the genetic engineering of single chains comprised of the common alpha subunit and one or more of the hormone-specific beta subunits tandemly arranged. These studies indicate that there is a structural permissiveness in the quaternary relationships between the subunits and biological activity. However, the conformational relationships between the ligand and the receptor are unclear. Bifunctional triple-domain analogs represent an ideal model to address this issue. Does a single molecule possess the ability to simultaneously interact with both specific receptors or are there two functionally distinct species in the chimeric population? Here we show, using a preadsorption protocol comprised of Chinese hamster ovary cells expressing either the luteinizing hormone (LH)/chorionic gonadotropin (CG) or follicle-stimulating hormone (FSH) receptor, that at least two distinct bioactive populations of the dually active triple-domain chimera FSHbeta-CGbeta-alpha are synthesized, each corresponding to a single activity (CG or FSH). Furthermore, we show that these bioactive populations form distinct stable heterodimer-like contacts. That there is not a single biologically active species formed during synthesis of the chimera implies that in vivo the heterodimer exists in multiple conformations and is not a static rigid molecule.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M408386200DOI Listing

Publication Analysis

Top Keywords

chinese hamster
8
hamster ovary
8
ovary cells
8
distinct bioactive
8
bioactive populations
8
single-chain bifunctional
4
bifunctional gonadotropin
4
gonadotropin analog
4
analog secreted
4
secreted chinese
4

Similar Publications

In this study, we employed a novel fluorescent probe, RO7304924-which selectively targets cannabinoid 2 receptor (CB2R)-to assess the lateral mobility of CB2R within the plasma membrane of Chinese hamster ovary cells stably expressing a functional, untagged receptor variant. Utilizing confocal fluorescence recovery after photobleaching (FRAP), we quantified the diffusion coefficient and mobile fraction of CB2R, thereby demonstrating the efficacy of RO7304924 as an innovative tool for elucidating the dynamics of this major endocannabinoid-binding G protein-coupled receptor. Our present findings highlight the potential of combining advanced ligand-based fluorescent probes with FRAP for future investigations into the biochemical details of CB2R mobility in living cells, and its impact on receptor-dependent cellular processes.

View Article and Find Full Text PDF

Comprehensive genome-scale CRISPR knockout screening of CHO cells.

Sci Data

January 2025

Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.

Chinese hamster ovary (CHO) cells play a pivotal role in the production of recombinant therapeutics. In the present study, we conducted a genome-scale pooled CRISPR knockout (KO) screening using a virus-free, recombinase-mediated cassette exchange-based platform in CHO-K1 host and CHO-K1 derived recombinant cells. Genome-wide guide RNA (gRNA) amplicon sequencing data were generated from cell libraries, as well as short- and long-term KO libraries, and validated through phenotypic assessment and gRNA read count distribution.

View Article and Find Full Text PDF

The Warburg effect, which describes the fermentation of glucose to lactate even in the presence of oxygen, is ubiquitous in proliferative mammalian cells, including cancer cells, but poses challenges for biopharmaceutical production as lactate accumulation inhibits cell growth and protein production. Previous efforts to eliminate lactate production in cells for bioprocessing have failed as lactate dehydrogenase is essential for cell growth. Here, we effectively eliminate lactate production in Chinese hamster ovary and in the human embryonic kidney cell line HEK293 by simultaneous knockout of lactate dehydrogenases and pyruvate dehydrogenase kinases, thereby removing a negative feedback loop that typically inhibits pyruvate conversion to acetyl-CoA.

View Article and Find Full Text PDF

Characterization and design of dipeptide media formulation for scalable therapeutic production.

Appl Microbiol Biotechnol

January 2025

School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-GuGyeonggi-Do 16419, Suwon-Si, South Korea.

Process intensification and simplification in biopharmaceutical manufacturing have driven the exploration of advanced feeding strategies to improve culture performance and process consistency. Conventional media design strategies, however, are often constrained by the stability and solubility challenges of amino acids, particularly in large-scale applications. As a result, dipeptides have emerged as promising alternatives.

View Article and Find Full Text PDF

Unlabelled: The choice of media and feeds significantly influences the performance of Chinese Hamster Ovary (CHO) mammalian cell cultures in producing desired biologics like monoclonal antibodies (mAb). Sub-optimal nutrient feed/media composition can severely impact cell proliferation and the quality of the final mAb product. For instance, proper protein glycosylation, crucial for mAb stability, safety, and efficacy, heavily relies on cell culture conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!