The mitochondrial antioxidant manganese superoxide dismutase (Mn-SOD) plays a critical cytoprotective role against oxidative stress. Vascular endothelial growth factor (VEGF) was shown previously to induce expression of Mn-SOD in endothelial cells by a NADPH oxidase-dependent mechanism. The goal of the current study was to determine the transcriptional mechanisms underlying this phenomenon. VEGF resulted in protein kinase C-dependent phosphorylation of IkappaB and subsequent translocation of p65 NF-kappaB into the nucleus. Overexpression of constitutively active IkappaB blocked VEGF stimulation of Mn-SOD. In transient transfection assays, VEGF increased Mn-SOD promoter activity, an effect that was dependent on a second intronic NF-kappaB consensus motif. In contrast, VEGF-mediated induction of Mn-SOD was enhanced by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and by dominant negative Akt and was decreased by constitutively active Akt. Overexpression of a constitutively active (phosphorylation-resistant) form of FKHRL1 (TMFKHRL1) resulted in increased Mn-SOD expression, suggesting that the negative effect of PI3K-Akt involves attenuation of forkhead activity. In co-transfection assays, the Mn-SOD promoter was transactivated by TMFKHRL1. Flavoenzyme inhibitor, diphenyleneiodonium (DPI), and antisense oligonucleotides against p47phox (AS-p47phox) inhibited VEGF stimulation of IkappaB/NF-kappaB and forkhead phosphorylation, supporting a role for NADPH oxidase activity in both signaling pathways. Like VEGF, hepatocyte growth factor (HGF) activated the PI3K-Akt-forkhead pathway. However, HGF-PI3K-Akt-forkhead signaling was insensitive to diphenyleneiodonium and AS-p47phox. Moreover, HGF failed to induce phosphorylation of IkappaB/NF-kappaB or nuclear translocation of NF-kappaB and had no effect on Mn-SOD expression. Together, these data suggest that VEGF is uniquely coupled to Mn-SOD expression through growth factor-specific reactive oxygen species (ROS)-sensitive positive (protein kinase C-NF-kappaB) and negative (PI3K-Akt-forkhead) signaling pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M408285200 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Aix-Marseille Université-CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille 13009, France.
Despite growing awareness of their importance in soil ecology, the genetic and physiological traits of bacterial predators are still relatively poorly understood. In the course of a predator evolution experiment, we identified a class of genotypes leading to enhanced predation against diverse species. RNA-seq analysis demonstrated that this phenotype is linked to the constitutive activation of a predation-specific program.
View Article and Find Full Text PDFInt Immunol
January 2025
Division of Innate Immunity, The Institute of Medical Science, The University of Tokyo; Minato-ku, Tokyo 108-8639, Japan.
The cancer driver mutation L265P MyD88 is found in approximately 30 % of cases in the activated B cell-like subgroup of diffuse large B cell-like lymphoma (ABC DLBCL). L265P MyD88 forms a complex with TLR9 and IgM, referred to as the My-T-BCR complex, to drive proliferation. We here show that the B cell surface molecules CD19 and CD20 enhance proliferation mediated by the My-T-BCR complex.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Ophthalmology, University of North Carolina, 130 Mason Farm Rd, Chapel Hill, NC 27517, USA.
Adeno-associated virus (AAV) inverted terminal repeats (ITRs) induce p53-dependent apoptosis in human embryonic stem cells (hESCs). To interrogate this phenomenon, a synthetic ITR (SynITR), harboring substitutions in putative p53 binding sites was generated and evaluated for vector production and gene delivery. Replication of SynITR flanked transgenic genome was similar compared to wild type (wt) ITR, with a modest increase in vector titers.
View Article and Find Full Text PDFUnlabelled: Biomolecular condensates organize cellular environments and regulate key processes such as transcription. We previously showed that full-length androgen receptor (AR-FL), a major oncogenic driver in prostate cancer (PCa), forms nuclear condensates upon androgen stimulation in androgen-sensitive PCa cells. Disrupting these condensates impairs AR-FL transcriptional activity, highlighting their functional importance.
View Article and Find Full Text PDFPI31 ( P roteasome Inhibitor of 31 ,000 Da) is a 20S proteasome-binding protein originally identified as an inhibitor of 20S proteasome activity. Although recent studies have provided a detailed structural basis for this activity, the physiologic significance of PI31-mediated proteasome inhibition remains uncertain and alternative cellular roles for PI31 have been described. Here we report a role for PI31 as a positive regulator for the assembly of the 20S immuno-proteasome (20Si), a compositionally and functionally distinct isoform of the proteasome that is poorly inhibited by PI31.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!