We have studied the interaction of a human tumor cell line, A253, derived from a submandibular gland carcinoma with a differentiation promoting reconstituted basement membrane extract, Matrigel. When cultured on plastic, these cells maintain a flat, cobblestone, epithelial morphology. On Matrigel, A253 cells initially form a honeycomb network of cords of cells which subsequently thickens. With time, these cords of cells become discontinuous and blunted, whereupon multilobular clusters of cells develop. These clusters possess a lumen with polarized, PAS(+) cells containing numerous desmosomes and an abundance of glycogen. Culture of the cells on laminin, the most abundant protein found in Matrigel, also induces this morphologic differentiation. Using synthetic laminin-derived peptides, the biologically active IKVAV-containing site of laminin was most active in attachment assays, as well as in inhibiting glandular-like morphogenesis when added to the media of cells cultured on Matrigel. Antibodies to the cell surface 67- and 32-kDa laminin binding proteins partially inhibited the glandular-like morphogenesis, suggesting that multiple interactions with laminin are likely required for the differentiation process. Our data demonstrate that A253 cells can undergo glandular-like morphogenesis on basement membrane and that laminin appears to be the major initiating factor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-4827(92)90389-pDOI Listing

Publication Analysis

Top Keywords

glandular-like morphogenesis
16
basement membrane
12
cells
9
tumor cell
8
cell a253
8
a253 cells
8
cords cells
8
laminin
5
glandular-like
4
morphogenesis human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!