Sesamin and sesamolin were tested for their ability to protect BV-2 microglia from hypoxia-induced cell death. These antioxidants dose-dependently reduced hypoxia-induced lactate dehydrogenase (LDH) release and dichlorofluorescein (DCF)-sensitive reactive oxygen species (ROS) production. Their effects on signaling pathway mitogen-activated protein kinases (MAPKs) and caspase-3 in hypoxia-induced cell death were further examined. Extracellular signal-regulated protein kinases (ERK1/2), c-jun NH(2)-terminal kinase (JNK), and p38 MAPKs were activated during hypoxia. The sesamin or sesamolin reduced caspase-3 and MAPK activation correlated well with diminished LDH release in BV-2 cells under hypoxia. Furthermore, they preserved superoxide dismutase (SOD) and catalase activities in BV-2 cells under hypoxia. Taken together, these results indicate that the mechanism of sesame antioxidants involves inhibition of MAPK pathways and apoptosis through scavenging of ROS in hypoxia-stressed BV-2 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2004.05.073 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!