A novel and patented procedure is described for the sonochemical fabrication of a new class of microelectrode array based sensor with electrode element populations of up to 2 x 10(5) cm(-2). For some years it has been accepted that microelectrode arrays offer an attractive route for lowering minimum limits of detection and imparting stir (convectional mass transport) independence to sensor responses; despite this no commercial biosensors, to date, have employed microelectrode arrays, largely due to the cost of conventional fabrication routes that have not proved commercially viable for disposable devices. Biosensors formed by our sonochemical approach offer unrivalled sensitivity and impart stir independence to sensor responses. This format lends itself for mass fabrication due to the simplicity and inexpensiveness of the approach; in the first instance impedimetric and amperometric sensors are reported for glucose as model systems. Sensors already developed for ethanol, oxalate and a number of pesticide determinations will be reported in subsequent publications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2004.02.002 | DOI Listing |
Neurosci Biobehav Rev
December 2024
Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas; Department of Psychology, University of Nevada, Las Vegas.
This review highlights the crucial role of neuroelectrophysiology in illuminating the mechanisms underlying Alzheimer's disease (AD) pathogenesis and progression, emphasizing its potential to inform the development of effective treatments. Electrophysiological techniques provide unparalleled precision in exploring the intricate networks affected by AD, offering insights into the synaptic dysfunction, network alterations, and oscillatory abnormalities that characterize the disease. We discuss a range of electrophysiological methods, from non-invasive clinical techniques like electroencephalography and magnetoencephalography to invasive recordings in animal models.
View Article and Find Full Text PDFTalanta
December 2024
School of Chemistry, Dalian University of Technology, Dalian, 116024, PR China. Electronic address:
The study of cell mechanics was significant for understanding cellular physiological functions, the mechanisms of disease occurrence, and the development of novel therapeutic approaches. However, research on the mechanism of mechanical strain action at the single-cell level was relatively lacking. Herein, we developed a serpentine stretchable sensor array capable of exerting precise mechanical strain on cells and monitoring extracellular pH (pHe) changes at single cell level.
View Article and Find Full Text PDFACS Sens
December 2024
Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
Three-dimensional (3D) cardiomyocyte spheroids are essential models to replicate cardiac structural and functional features in vitro. However, conventional planar and rigid microelectrode arrays (MEAs) suffer from low-quality electrophysiological recording of 3D cultures, due to limited contact areas and weak coupling between cells and MEA chips. Herein, we developed a PEDOT: PSS-modified organic flexible and implantable MEA (OFI-MEA) coupled with a self-developed integrated biosensing platform to achieve high-throughput, long-term, and stable bidirectional internal electrophysiology in 3D cardiomyocyte spheroids.
View Article and Find Full Text PDFNeurobiol Dis
December 2024
Oscar Langendorff Institute of Physiology, University Medical Centre Rostock, Rostock, Germany. Electronic address:
Background: Deep brain stimulation (DBS) targeting globus pallidus internus (GPi) is a recognised therapy for drug-refractory dystonia. However, the mechanisms underlying this effect are not fully understood. This study explores how pallidal DBS alters spatiotemporal pattern formation of neuronal dynamics within the cerebellar cortex in a dystonic animal model, the dt hamster.
View Article and Find Full Text PDFHum Brain Mapp
December 2024
Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Intracortical microstimulation (ICMS) is a method for restoring sensation to people with paralysis as part of a bidirectional brain-computer interface (BCI) to restore upper limb function. Evoking tactile sensations of the hand through ICMS requires precise targeting of implanted electrodes. Here we describe the presurgical imaging procedures used to generate functional maps of the hand area of the somatosensory cortex and subsequent planning that guided the implantation of intracortical microelectrode arrays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!