Direct electron transfer (DET) was shown between the heme containing enzyme theophylline oxidase (ThO) and the surface of both graphite and gold electrodes. As proof on graphite a steady state current for theophylline was recorded using the electrode modified with adsorbed ThO. The electrode showed a Michaelis-Menten-like response to theophylline with a detection limit of 0.2 mM and a Michaelis-Menten constant equal to 3.2 mM. These initial results open up a possibility for the development of reagentless third generation biosensor based on heterogeneous DET between ThO and an electrode. On gold DET between ThO and the surface of aldrithiol modified gold was studied with spectroelectrochemical measurements. DET was observed for soluble ThO as a change of its spectrum in a gold capillary responding to a change in the applied potential. It was shown that the redox conversion of the heme domain of the enzyme is directly (mediatorlessly) driven by the potential applied at the gold electrode. The measurements enabled an estimation of the formal potential (E degrees ') of the redox process equal to -275 +/- 50 mV versus Ag|AgClsat at pH 7.0. The experimentally determined number of the electrons involved in this heterogeneous electron transfer process was estimated to be equal to 0.53. The low precision in determination of the E degrees ' and the value of the number of electrons lower than one indicate that kinetic restrictions disturbed the evaluation of the true thermodynamic values from relatively fast spectroelectrochemical measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2004.03.010 | DOI Listing |
Environ Sci Technol
January 2025
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
Pyrogenic carbons (PCs), with varying structures depending on the materials and thermal treatment conditions, have been extensively used to enhance anaerobic digestion by mediating electron transfer. However, the underlying mechanism has yet to be explored. Herein, the redirection and enhancement of the direct interspecies electron transfer (DIET) pathway were evidenced, along with the upregulated electrochemical properties and structural proteins in the methanogenic consortia.
View Article and Find Full Text PDFNat Mater
January 2025
Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.
Spin waves, or magnons, are essential for next-generation energy-efficient spintronics and magnonics. Yet, visualizing spin-wave dynamics at nanoscale and microwave frequencies remains a formidable challenge due to the lack of spin-sensitive, time-resolved microscopy. Here we report a breakthrough in imaging dipole-exchange spin waves in a ferromagnetic film owing to the development of laser-free ultrafast Lorentz electron microscopy, which is equipped with a microwave-mediated electron pulser for high spatiotemporal resolution.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR. China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR. China. Electronic address:
Antimony (Sb) contamination in water resources poses a critical environmental and health challenge globally. Sulfate reducing bacteria (SRB) are employed to reduce SO to S for removing Sb in a microbial electrolysis cell (MEC). Yet, the reduction efficiency of reducing SO and Sb(Ⅴ) through SRB remains relatively low, and the underlying mechanism remains elusive.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Henan University of Technology, School of Chemistry and Chemical Engineering, CHINA.
Developing of molecular crystalline materials with light-induced multiple dynamic deformation in space dimension and photochromism on time scales has attracted much attention for its potential applications in actuators, sensoring and information storage. Nevertheless, organic crystals capable of both photoinduced dynamic effects and static color change are rare, particularly for multi-component cocrystals system. In this study, we first report the construction of charge transfer co-crystals allows their light-induced solid-to-liquid transition and photochromic behaviors to be controlled by trans-stilbene (TSB) as an electron donor and 3,4,5,6-Tetrafluorophthalonitrile (TFP) as an electron acceptor.
View Article and Find Full Text PDFPhotosynth Res
January 2025
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russia, 119991.
The femtosecond dynamics of energy transfer from light-excited spirilloxanthin (Spx) to bacteriochlorophyll (BChl) a in the reaction centers (RCs) of purple photosynthetic bacteria Rhodospirillum rubrum was studied. According to crio-electron microscopy data, Spx is located near accessory BChl a in the B-branch of cofactors. Spx was excited by 25 fs laser pulses at 490 nm, and difference absorption spectra were recorded in the range 500-700 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!