Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It has been known for more than one hundred years that plant cells are interconnected by cytoplasmic channels called plasmodesmata. This supracellularity was generally considered to be an exotic feature of walled plants containing immobile cells that are firmly enclosed within robust walls. Unexpectedly, intercellular channels in mobile animal cells have been discovered recently. These are extremely dynamic and sensitive to mechanical stress, which causes their rapid breakage and retraction. Both plasmodesmata and nanotubular cell-to-cell channels are supported by the actin cytoskeleton and exclude microtubules. In this article, we discuss the relevance of cell-to-cell channels not only for intercellular communication but also for the development and morphogenesis of multicellular organisms. We also suggest possible parallels between the cell-to-cell transport of endosomes and intracellular pathogens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tcb.2004.07.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!