Constitutive expression of CD25, the IL-2 receptor alpha-chain, defines a distinct population of CD4+ T cells (Treg) with suppressive activity in vitro and in vivo. IL-2 has been implicated in the generation and maintenance of Treg, however, a functional contribution of the IL-2 receptor during suppression is thus far unknown. We show that IL-2 is required for Treg function in vitro, since suppression is completely abrogated by selective blocking of the IL-2 receptor on Treg during co-culture with responder T cells. We demonstrate that Treg, which do not produce IL-2, compete for IL-2 secreted by responder T cells. In accordance with the idea of competition being part of the suppressive mechanism, in vitro neutralization of IL-2 mimics all effects of Treg. Conversely, recombinant IL-2 abrogates inhibition of IL-2 production in responder T cells, the hallmark of Treg suppression. Finally, activation in the presence of IL-2 primes Treg to produce IL-10 upon secondary stimulation, indicating that IL-2 uptake is also required to induce additional suppressive factors that might be more relevant for suppression in vivo. We propose the parakrine uptake of soluble mediators as a flexible mechanism to adapt Treg activity to the strength of the responder T cell reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/eji.200425274 | DOI Listing |
Mod Rheumatol
January 2025
Department of Rheumatology, Kameda Medical Center.
Objectives: To investigate the factors affecting laboratory data and computed tomography (CT) attenuation values of L1 trabecular and femoral bone marrow, potential markers for differentiating between adult-onset Still's disease and intravascular large B-cell lymphoma.
Methods: We conducted a retrospective observational study on patients diagnosed with adult-onset Still's disease or intravascular large B-cell lymphoma. Clinical and laboratory data, and CT attenuation values of the bone marrow were compared.
Front Immunol
January 2025
Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
Introduction: Hyperthermia is an established adjunct in multimodal cancer treatments, with mechanisms including cell death, immune modulation, and vascular changes. Traditional hyperthermia applications are resource-intensive and often associated with patient morbidity, limiting their clinical accessibility. Gold nanorods (GNRs) offer a precise, minimally invasive alternative by leveraging near-infrared (NIR) light to deliver targeted hyperthermia therapy (THT).
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.
Background: Renal failure related death caused by diabetic kidney disease (DKD) is an inevitable outcome for most patients. This study aimed to identify the critical genes involved in the onset and progression of DKD and to explore potential therapeutic targets of DKD.
Methods: We conducted a batch of protein quantitative trait loci (pQTL) Mendelian randomization analysis to obtain a group of proteins with causal relationships with DKD and then identified key proteins through colocalization analysis to determine correlations between variant proteins and disease outcomes.
BMC Biol
January 2025
School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
Background: Poliovirus receptor (PVR) and its receptor system, including TIGIT, CD226, and CD96, play a pivotal role in orchestrating tumor immune evasion. Upon engagement with PVR on tumor cells, CD96 exerts inhibitory effects on the function of T cells and NK cells, thereby fostering tumor immune evasion. Therefore, screening of immune checkpoint inhibitors (ICIs) targeting the CD96/PVR pathway will provide promising candidates for tumor immunotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!