Mitogen-activated protein (MAP) kinases are essential regulators in immune responses, and their activities are modulated by kinases and phosphatases. MAP kinase phosphatase (MKP) is a family of dual-specificity phosphatases whose function is evolutionarily conserved. A number of mammalian MKPs have been identified so far, but their specific physiological functions in negative regulation of MAP kinases have not been genetically defined. Here we examine innate and adaptive immune responses in the absence of MKP5. JNK activity was selectively increased in Mkp5 (also known as Dusp10)-deficient mouse cells. Mkp5-deficient cells produced greatly enhanced levels of pro-inflammatory cytokines during innate immune responses and exhibited greater T-cell activation than their wild-type counterparts. However, Mkp5-deficient T cells proliferated poorly upon activation, which resulted in increased resistance to experimental autoimmune encephalomyelitis. By contrast, Mkp5-deficient CD4(+) and CD8(+) effector T cells produced significantly increased levels of cytokines compared with wild-type cells, which led to much more robust and rapidly fatal immune responses to secondary infection with lymphocytic choriomeningitis virus. Therefore, MKP5 has a principal function in both innate and adaptive immune responses, and represents a novel target for therapeutic intervention of immune diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature02764DOI Listing

Publication Analysis

Top Keywords

immune responses
24
innate adaptive
12
adaptive immune
12
map kinase
8
kinase phosphatase
8
map kinases
8
mkp5-deficient cells
8
cells produced
8
immune
7
responses
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!