Elastic-rod models of DNA have offered an alternative method for studying the macroscopic properties of the molecule. An essential component of the modelling effort is to identify the biologically accessible, or stable, solutions. The underlying variational structure of the elastic-rod model can be exploited to derive methods that identify stable equilibrium configurations. We present two methods for determining the stability of the equilibria of elastic-rod models: the conjugate-point method and the distinguished-diagram method. Additionally, we apply these methods to two intrinsically curved DNA molecules: a DNA filament with an A-tract bend and a DNA minicircle with a catabolite gene activator protein binding site. The stable solutions of these models provide visual insight into the three-dimensional structure of the DNA molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rsta.2004.1382 | DOI Listing |
Phys Rev E
November 2024
Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany.
Buckling instabilities driven by tissue growth underpin key developmental events such as the folding of the brain. Tissue growth is disordered due to cell-to-cell variability, but the effects of this variability on buckling are unknown. Here, we analyze what is perhaps the simplest setup of this problem: the buckling of an elastic rod with fixed ends driven by spatially varying, yet highly symmetric growth.
View Article and Find Full Text PDFBiomech Model Mechanobiol
December 2024
Department of Mathematics, Technical University of Munich, Boltzmannstr. 3/III, 85748, Garching b. München, Germany.
Endovascular coil embolization is one of the primary treatment techniques for cerebral aneurysms. Although it is a well-established and minimally invasive method, it bears the risk of suboptimal coil placement which can lead to incomplete occlusion of the aneurysm possibly causing recurrence. One of the key features of coils is that they have an imprinted natural shape supporting the fixation within the aneurysm.
View Article and Find Full Text PDFBioengineering (Basel)
October 2023
Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
Comput Methods Programs Biomed
October 2023
School of Life Science, Beijing lnstitute of Technology, Beijing, 100081, China. Electronic address:
Background And Objective: Magnetic guidewire, fabricated from hard-magnetic soft composites, has recently emerged as an appropriate candidate for magnetic actuation systems to perform intravascular surgical navigation, owing to its elastic, magnetically steerable properties and good interphase with biological tissues. A suitable and efficient mathematical model for the magnetic guidewire is essential in the system to execute remote manipulation and active control.
Methods: This paper presents a real-time Kirchhoff rod-based dynamical modeling approach, the magneto-elastic rod model, to simulate magnetic guidewire, which provides accurate simulations for two- and three-dimensional dynamic deflections induced by external magnetic fields and obtains deformed guidewire shapes in quasi-static status.
IEEE Sens J
November 2022
Mechanical Engineering Department, Johns Hopkins University, MD 21201 USA.
Flexible bevel-tipped needles are often used for needle insertion in minimally-invasive surgical techniques due to their ability to be steered in cluttered environments. Shapesensing enables physicians to determine the location of needles intra-operatively without requiring radiation of the patient, enabling accurate needle placement. In this paper, we validate a theoretical method for flexible needle shape-sensing that allows for complex curvatures, extending upon a previous sensor-based model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!