Large-scale grid-enabled lattice Boltzmann simulations of complex fluid flow in porous media and under shear.

Philos Trans A Math Phys Eng Sci

Centre for Computational Science, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London WC1H 0AJ, UK.

Published: August 2004

Well-designed lattice Boltzmann codes exploit the essentially embarrassingly parallel features of the algorithm and so can be run with considerable efficiency on modern supercomputers. Such scalable codes permit us to simulate the behaviour of increasingly large quantities of complex condensed matter systems. In the present paper, we present some preliminary results on the large-scale three-dimensional lattice Boltzmann simulation of binary immiscible fluid flows through a porous medium, derived from digitized X-ray micro-tomographic data of Bentheimer sandstone, and from the study of the same fluids under shear. Simulations on such scales can benefit considerably from the use of computational steering, and we describe our implementation of steering within the lattice Boltzmann code, called LB3D, making use of the RealityGrid steering library. Our large-scale simulations benefit from the new concept of capability computing, designed to prioritize the execution of big jobs on major supercomputing resources. The advent of persistent computational grids promises to provide an optimal environment in which to deploy these mesoscale simulation methods, which can exploit the distributed nature of computer, visualization and storage resources to reach scientific results rapidly; we discuss our work on the grid-enablement of lattice Boltzmann methods in this context.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2004.1402DOI Listing

Publication Analysis

Top Keywords

lattice boltzmann
20
lattice
5
boltzmann
5
large-scale grid-enabled
4
grid-enabled lattice
4
boltzmann simulations
4
simulations complex
4
complex fluid
4
fluid flow
4
flow porous
4

Similar Publications

The present study focuses on the ground state mechanical, acoustic, thermodynamic and electronic transport properties of NaSbS polymorphs using the density functional theory (DFT) and semi-classical Boltzmann transport theory. The mechanical stability of the polymorphs is affirmed by the calculated elastic tensor. The calculated elastic properties asserted that all the polymorphs exhibit soft, brittle, anisotropic nature containing dominant covalent bonding.

View Article and Find Full Text PDF

Simulating fish autonomous swimming behaviours using deep reinforcement learning based on Kolmogorov-Arnold Networks.

Bioinspir Biomim

January 2025

Southwest Research Institute for Hydraulic and Water Transport Engineering, Chongqing Jiaotong University, Chongqing, People's Republic of China.

The study of fish swimming behaviours and locomotion mechanisms holds significant scientific and engineering value. With the rapid advancements in artificial intelligence, a new method combining deep reinforcement learning (DRL) with computational fluid dynamics has emerged and been applied to simulate the fish's adaptive swimming behaviour, where the complex fish behaviour is decoupled to focus on the fish's response to the hydrodynamic field, and the simulation is driven by reward-based objectives to model the fish's swimming behaviour. However, the scale of this cross-disciplinary method is directly affected by the efficiency of the DRL model.

View Article and Find Full Text PDF

Achieving Superior Thermoelectric Performance in Methoxy-Functionalized MXenes: The Role of Organic Functionalization.

ACS Appl Mater Interfaces

January 2025

College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.

Thermoelectric technology enables the direct and reversible conversion of heat into electrical energy without air pollution. Herein, the stability, electronic structure, and thermoelectric properties of methoxy-functionalized MC(OMe) (M = Sc, Ti, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, and W) were systematically investigated using first-principles calculations and semiclassical Boltzmann transport theory. All MXenes, except those with M = Cr, Mo, and W, can be synthesized by substituting Cl- and Br-functionalized MXenes with deprotonated methanol, with stability governed by the M-O bond strength.

View Article and Find Full Text PDF

Fluid flow and amyloid transport and aggregation in the brain interstitial space.

PNAS Nexus

January 2025

Université Paris Cité, CNRS, Laboratoire de Biochimie  Théorique, 13 rue Pierre et Marie Curie, Paris 75005, France.

The driving mechanisms at the base of the clearance of biological wastes in the brain interstitial space (ISS) are still poorly understood and an actively debated subject. A complete comprehension of the processes that lead to the aggregation of amyloid proteins in such environment, hallmark of the onset and progression of Alzheimer's disease, is of crucial relevance. Here we employ combined computational fluid dynamics and molecular dynamics techniques to uncover the role of fluid flow and proteins transport in the brain ISS.

View Article and Find Full Text PDF

Proton exchange membrane fuel cells (PEMFCs) are being pursued for applications in the maritime industry to meet stringent ship emissions regulations. Further basic research is needed to improve the performance of PEMFCs in marine environments. Assembly stress compresses the gas diffusion layer (GDL) beneath the ribs, significantly altering its pore structure and internal transport properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!