Thiosulphate is one of the products of the initial step of the elemental sulphur oxidation pathway in the thermoacidophilic archaeon Acidianus ambivalens. A novel thiosulphate:quinone oxidoreductase (TQO) activity was found in the membrane extracts of aerobically grown cells of this organism. The enzyme was purified 21-fold from the solubilized membrane fraction. The TQO oxidized thiosulphate with tetrathionate as product and ferricyanide or decyl ubiquinone (DQ) as electron acceptors. The maximum specific activity with ferricyanide was 73.4 U (mg protein)(-1) at 92 degrees C and pH 6, with DQ it was 397 mU (mg protein)(-1) at 80 degrees C. The Km values were 2.6 mM for thiosulphate (k(cat) = 167 s(-1)), 3.4 mM for ferricyanide and 5.87 micro M for DQ. The enzymic activity was inhibited by sulphite (Ki = 5 micro M), metabisulphite, dithionite and TritonX-100, but not by sulphate or tetrathionate. A mixture of caldariella quinone, sulfolobus quinone and menaquinone was non-covalently bound to the protein. No other cofactors were detected. Oxygen consumption was measured in membrane fractions upon thiosulphate addition, thus linking thiosulphate oxidation to dioxygen reduction, in what constitutes a novel activity among Archaea. The holoenzyme was composed of two subunits of apparent molecular masses of 28 and 16 kDa. The larger subunit appeared to be glycosylated and was identical to DoxA, and the smaller was identical to DoxD. Both subunits had been described previously as a part of the terminal quinol:oxygen oxidoreductase complex (cytochrome aa3).

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2958.2004.04193.xDOI Listing

Publication Analysis

Top Keywords

sulphur oxidation
8
oxidation dioxygen
8
dioxygen reduction
8
thiosulphatequinone oxidoreductase
8
protein-1 degrees
8
thiosulphate
5
coupling pathway
4
pathway sulphur
4
reduction characterization
4
characterization novel
4

Similar Publications

Aerobic and anaerobic organisms and their functions are spatially or temporally decoupled at scales ranging from individual cells to ecosystems and from minutes to hours. This is due to competition for energy substrates and/or biochemical incompatibility with oxygen (O). Here we report a chemolithotrophic Aquificales bacterium, Hydrogenobacter, isolated from a circumneutral hot spring in Yellowstone National Park (YNP) capable of simultaneous aerobic and anaerobic respiration when provided with hydrogen (H), elemental sulfur (S), and O.

View Article and Find Full Text PDF

Obesity treatment requires an individualized approach, emphasizing the need to identify metabolic pathways of diagnostic relevance. Toll-like receptors (TLRs), particularly TLR2 and TLR4, play a crucial role in metabolic disorders, as receptor deficiencies improves insulin sensitivity and reduces obesity-related inflammation. Additionally, hydrogen sulfide (HS) influences lipolysis, adipogenesis, and adipose tissue browning through persulfidation.

View Article and Find Full Text PDF

Oxidative damage, oxidative inflammation, and a range of downstream diseases represent significant threats to human health. The application of natural antioxidants and anti-inflammatory agents can help prevent and mitigate these associated diseases. In this study, we aimed to investigate the effectiveness of walnut green husk (WNGH) as an antioxidant and anti-inflammatory agent in an in vitro setting.

View Article and Find Full Text PDF

An obligately anaerobic, spore-forming sulphate-reducing bacterium, strain SB140, was isolated from a long-term continuous enrichment culture that was inoculated with peat soil from an acidic fen. Cells were immotile, slightly curved rods that stained Gram-negative. The optimum temperature for growth was 28 °C.

View Article and Find Full Text PDF

A novel and efficient strategy for the direct synthesis of 3-arylthioquinoline derivatives via radical induced tandem cyclization of propargylamines with diaryl disulfides was developed. This protocol undergoes a cascade sulfuration/ cyclization/ oxidation/ aromatization pathway to afford the desired products in a broad substrate scope using readily available starting materials under mild conditions. Based on this strategy, we further modified 3-arylquinolines to obtain two novel deep blue fluorescent molecules, QLSCz and QLSTCz, with good optical properties through two-step synthesis by oxidation and electron donor modification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!