A fundamental question in the formation of the nervous system is the extent to which a neurotransmitter contributes to the development of the neurons that synthesize and release it. A complementary question is whether neurotransmitter signaling contributes to the development of postsynaptic targets. Prior studies have suggested that adrenergic signaling may promote adrenergic neuronal proliferation or survival and may be critical for the postnatal development of the cerebellum. To test these possibilities genetically, we studied mice that are unable to synthesize norepinephrine and epinephrine (NE/E), the endogenous adrenergic receptor ligands, due to a disruption the gene for dopamine beta-hydroxylase. These mice develop postnatally in the absence of NE/E. Here we report that the adrenergic neurons of these mutant mice are present in normal numbers and locations and exhibit typical innervation patterns throughout the central nervous system (CNS), as assessed by immunostaining for tyrosine hydroxylase and the NE transporter. Furthermore, cerebellar cortical development (size, foliation, layering, cell number, and position), which proceeds to a large degree postnatally, is unaltered in the mutants. These results indicate that the fate and innervation pattern of the adrenergic neurons, as well as the development of the cerebellum, do not depend on postnatal signaling by NE/E. The results also suggest that when restoration of adrenergic signaling is performed in this mutant mouse model (by administering a synthetic precursor of NE), reversal of phenotypes is due to the synthesis and release of NE/E from adrenergic terminals that are distributed normally within the CNS.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.20263DOI Listing

Publication Analysis

Top Keywords

development cerebellum
12
postnatal development
8
adrenergic
8
norepinephrine epinephrine
8
nervous system
8
contributes development
8
adrenergic signaling
8
adrenergic neurons
8
development
5
cerebellum cns
4

Similar Publications

Paraneoplastic cerebellar degeneration (PCD) is a rapidly progressive, immune-mediated syndrome characterized by the degeneration of Purkinje cells, often associated with the presence of antibodies targeting intracellular antigens within these cells. These autoantibodies are implicated in the induction of cytotoxicity, leading to Purkinje cell death, as demonstrated in in vitro models. However, the precise roles of antibodies and T lymphocytes in mediating neuronal injury remain a subject of ongoing research, with T cells appearing to be the main effectors of cerebellar injury.

View Article and Find Full Text PDF

The cerebellum is involved in non-motor processing, supported by topographically distinct cerebellar activations and closed-loop circuits between the cerebellum and the cortex. Disruptions to cerebellar function may negatively impact prefrontal function and processing. Cerebellar resources may be important for offloading cortical processing, providing crucial scaffolding for normative performance and function.

View Article and Find Full Text PDF

The cortex and cerebellum are densely connected through reciprocal input/output projections that form segregated circuits. These circuits are shown to differentially connect anterior lobules of the cerebellum to sensorimotor regions, and lobules Crus I and II to prefrontal regions. This differential connectivity pattern leads to the hypothesis that individual differences in structure should be related, especially for connected regions.

View Article and Find Full Text PDF

Astrocytes in aging.

Neuron

January 2025

Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA. Electronic address:

The mammalian nervous system is impacted by aging. Aging alters brain architecture, is associated with molecular damage, and can manifest with cognitive and motor deficits that diminish the quality of life. Astrocytes are glial cells of the CNS that regulate the development, function, and repair of neural circuits during development and adulthood; however, their functions in aging are less understood.

View Article and Find Full Text PDF

Regulation of INPP5E in Ciliogenesis, Development, and Disease.

Int J Biol Sci

January 2025

Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, USA.

Inositol polyphosphate-5-phosphatase E (INPP5E) is a 5-phosphatase critically involved in diverse physiological processes, including embryonic development, neurological function, immune regulation, hemopoietic cell dynamics, and macrophage proliferation, differentiation, and phagocytosis. Mutations in cause Joubert and Meckel-Gruber syndromes in humans; these are characterized by brain malformations, microphthalmia, situs inversus, skeletal abnormalities, and polydactyly. Recent studies have demonstrated the key role of INPP5E in governing intracellular processes like endocytosis, exocytosis, vesicular trafficking, and membrane dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!