Previous reports have demonstrated the anxiolytic effect of the potent and systemically active metabotropic glutamate subtype 5 (mGlu5) receptor antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) in rodents. Here, we present evidence for the anxiolytic activity of a novel mGlu5 receptor antagonist, 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP), in rats and compare its profile to the benzodiazepine receptor agonist diazepam. MTEP occupied mGlu5 receptors in a dose-dependent manner with essentially full receptor occupancy at the highest dose tested (10 mg/kg, i.p.). At doses appropriate for mGlu5 receptor-mediated effects, MTEP significantly reduced fear-potentiated startle and increased punished responding in a modified Geller-Seifter conflict model consistent with an anxiolytic-like profile. In both models, the magnitude of the anxiolytic-like response was similar to that seen with diazepam. In contrast, MTEP decreased unpunished responding to a lesser extent than diazepam and had no effect on rotarod performance when administered either alone or in combination with ethanol. Repeated dosing with MTEP in this model eliminated the increase in punished responding observed with acute dosing. The present results suggest that mGlu5 receptor antagonists lack the side effects seen with benzodiazepines, such as sedation and ethanol interaction, and provide insight into a possible role for mGlu5 receptor antagonists in the modulation of mood disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.npp.1300540DOI Listing

Publication Analysis

Top Keywords

mglu5 receptor
20
receptor antagonist
12
antagonist 3-[2-methyl-13-thiazol-4-ylethynyl]pyridine
8
3-[2-methyl-13-thiazol-4-ylethynyl]pyridine mtep
8
punished responding
8
receptor antagonists
8
mglu5
7
receptor
7
mtep
6
behavioral profile
4

Similar Publications

Pharmacology, Signaling and Therapeutic Potential of Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators.

ACS Pharmacol Transl Sci

December 2024

Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia.

Metabotropic glutamate receptors are a family of eight class C G protein-coupled receptors regulating higher order brain functions including cognition and motion. Metabotropic glutamate receptors have thus been heavily investigated as potential drug targets for treating neurological disorders. Drug discovery efforts directed toward metabotropic glutamate receptor subtype 5 (mGlu) have been particularly fruitful, with a wealth of drug candidates and pharmacological tools identified.

View Article and Find Full Text PDF

This Letter details our efforts to develop novel, non-acetylene-containing metabotropic glutamate receptor subtype 5 (mGlu) negative allosteric modulators (NAMs) with improved pharmacological properties. This endeavor involved replacing the ether-linked pyrimidine moiety, a metabolic liability, with various 5-membered heterocycles. From this exercise, we identified , a highly brain penetrant and selective mGlu NAM which displayed moderate potency against both human and rat mGlu.

View Article and Find Full Text PDF

AE90015 is a highly specific and effective negative allosteric modulator (NAM) for the human mGlu5 receptor, showing significant promise for treating Parkinson's disease. An in vivo rat oral dose study was conducted on AE90015, which involved the collection of urine and bile samples over a 24 h period. At the study's endpoint, plasma, liver, brain, and renal tissues were also collected.

View Article and Find Full Text PDF

l-arginine derivatives (ADMA, SDMA, NMMA) are endogenous inhibitors of nitric oxide (NO֗) production, which is essential in critical brain processes including blood-brain barrier (BBB) integrity and long-term potentiation (LTP). ADMA and NMMA are degraded by dimethylarginine dimethylaminohydrolase 1 (DDAH1) and protein arginine methyltransferase 5 (PRMT5) is an emerging epigenetic enzyme that mainly represses transcription of target genes via symmetric dimethylation of arginine residues. There is no data concerning the impact of metabotropic glutamate receptors (mGlu) ligands on this aspect of brain physiology.

View Article and Find Full Text PDF

Rationale: Due to the numerous limitations of ketamine as a rapid-acting antidepressant drug (RAAD), research is still being conducted to find an effective and safe alternative to this drug. Recent studies indicate that the partial mGlu receptor negative allosteric modulator (NAM), 2-(2-(3-methoxyphenyl)ethynyl)-5-methylpyridine (M-5MPEP), has therapeutic potential as an antidepressant.

Objectives: The study aimed to investigate the potential rapid antidepressant-like effect of M-5MPEP in a mouse model of depression and to determine the mechanism of this action.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!