The phospholipase A2 receptor (PLA2R) is a type I transmembrane glycoprotein related to the C-type animal lectin family such as the mannose receptor. PLA2R regulates a variety of biological responses elicited by secretory phospholipase A2s (sPLA2s). Group IB sPLA2 acts as an endogenous ligand to induce cell proliferation and lipid mediator production. Analysis of PLA2R-deficient mice suggested a potential role of the sPLA2-IB/PLA2R pathway in the production of proinflammatory cytokines during endotoxic shock. PLA2R is also involved in the clearance of sPLA2s, especially group X sPLA2, to protect their exaggerated reactions by potent enzymatic activities. In circulation, the soluble form of PLA2R is constitutively present as an endogenous inhibitor for mammalian sPLA2s.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/bpb.27.1165 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China. Electronic address:
Deltamethrin (DM), a broad-spectrum insecticide, is widely used in the world. It can exert direct action on the central nervous system to produce neurotoxicity. Exposure to DM can lead to iron metabolism disorder, oxidative stress and learning and memory dysfunction.
View Article and Find Full Text PDFPlatelets
December 2025
Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA.
Platelet-like particles (PLPs), derived from megakaryocytic cell lines MEG-01 and K-562, are widely used as a surrogate to study platelet formation and function. We demonstrate by RNA-Seq that PLPs are transcriptionally distinct from platelets. Expression of key genes in signaling pathways promoting platelet activation/aggregation, such as the PI3K/AKT, protein kinase A, phospholipase C, and α-adrenergic and GP6 receptor pathways, was missing or under-expressed in PLPs.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Shanxi Genetic Engineering Center for Experimental Animal Models, The Fifth Hospital (Shanxi Provincial People's Hospital) of Shanxi Medical University, Taiyuan, Shanxi, China.
Phospholipase A2 receptor 1 (PLA2R1) exists in many animals and plays an important role in membranous nephropathy. In this study, we aimed to evaluate a PLA2R1 knock-in rat model with repaired kidney function to study the molecular mechanisms of membranous nephropathy. We constructed the PLA2R1 knockout [PLA2R1(-)] model and PLA2R1 knock in [PLA2R1(+)] model in rats.
View Article and Find Full Text PDFWorld J Gastroenterol
January 2025
Department of General Surgery, China-Japan Friendship Hospital, Beijing 100029, China.
Background: The objective of the current study was to elucidate the clinical mechanism through which phospholipase D2 (PLD2) exerted a regulatory effect on neutrophil migration, thereby alleviating the progression of acute pancreatitis.
Aim: To elucidate the clinical mechanism through which PLD2 exerted a regulatory effect on neutrophil migration, thereby alleviating the progression of acute pancreatitis.
Methods: The study involved 90 patients diagnosed with acute pancreatitis, admitted to our hospital between March 2020 and November 2022.
Ren Fail
December 2025
Department of Nephrology, Xiamen Key Laboratory of Precision Diagnosis and Treatment of Chronic Kidney Disease, The Fifth Hospital of Xiamen, Xiamen, Fujian, China.
Adult nephrotic syndrome is primarily caused by membranous nephropathy (MN), with idiopathic membranous nephropathy (IMN) being a prominent subtype. The onset of phospholipase A2 receptor (PLA2R1)-associated IMN is critically linked to M-type PLA2R1 exposure, yet the mechanism underlying glomerular injury remains unclear. In this study, membranous nephropathy datasets (GSE115857, GSE200828) were retrieved from GEO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!