Formation of interleukin-6 (IL-6) in osteoblasts and bone marrow stromal cells is believed to regulate osteoclast recruitment. The anti-inflammatory cytokines interleukin-4 and -13 (IL-4 and IL-13) stimulate IL-6 production in human osteoblasts. We investigated the relative potencies, and synergistic effects, between IL-4, IL-13 and interleukin-1 (IL-1) on IL-6 formation in human osteoblast-like cells. Isolated human osteoblast-like cells were incubated for 72 h in the presence of various concentrations of IL-4, IL-13 and IL-1, and IL-6 secretion was measured by ELISA. All cytokines stimulated the secretion of IL-6. The rank order of potency was IL-1>>IL-4>IL-13. There were no additive or synergistic effects between IL-4 and IL-13. However, co-stimulation with IL-1 and IL-4 resulted in a marked synergistic effect on IL-6 secretion. Co- stimulation with IL-1 and IL-13 gave a minor synergistic effect. In conclusion, IL-4/13 synergistically potentiates IL-1 induced secretion of IL-6 in human osteoblast-like cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.orthres.2004.02.008DOI Listing

Publication Analysis

Top Keywords

human osteoblast-like
16
osteoblast-like cells
16
il-4 il-13
16
induced secretion
8
synergistic effects
8
effects il-4
8
il-1 il-6
8
il-6 secretion
8
secretion il-6
8
il-6
7

Similar Publications

Impact of Particle Size and Sintering Temperature on Calcium Phosphate Gyroid Structure Scaffolds for Bone Tissue Engineering.

J Funct Biomater

November 2024

Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany.

Due to the chemical composition and structure of the target tissue, autologous bone grafting remains the gold standard for orthopedic applications worldwide. However, ongoing advancements in alternative grafting materials show that 3D-printed synthetic biomaterials offer many advantages. For instance, they provide high availability, have low clinical limitations, and can be designed with a chemical composition and structure comparable to the target tissue.

View Article and Find Full Text PDF

The simple oxides like titania, zirconia, and ZnO are famous with their antibacterial (or even antimicrobial) properties as well as their biocompatibility. They are broadly used for air and water filtering, in food packaging, in medicine (for implants, prostheses, and scaffolds), etc. However, these application fields can be broadened by switching to the composite multicomponent compounds (for example, titanates) containing in their unit cell, together with oxygen, several different metallic ions.

View Article and Find Full Text PDF

A 3D-Printable Cell Array for In Vitro Breast Cancer Modeling.

Int J Mol Sci

December 2024

Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.

Breast cancer is the most common cancer and the second leading cause of cancer-related death in women. In advanced stages of the disease, breast cancer can spread and metastasize to the bone, contributing to malignant progression. The roles of tissue stiffness and remodeling of the tumor microenvironment are relevant in influencing cancer progression and invasiveness, but they are still poorly understood.

View Article and Find Full Text PDF

This article presents a study on the functional properties and morphology of coatings based on amorphous silicon oxycarbide modified with phosphate ions and comodified with aluminum and boron. The objective of this modification was to enhance the biocompatibility and bioactivity without affecting its protective properties. The comodification was aimed toward stabilization of phosphate in the structure.

View Article and Find Full Text PDF

Multivariate analysis of Raman spectra for discriminating human collagens: In vitro identification of extracellular matrix collagens produced by an osteosarcoma cell line.

Spectrochim Acta A Mol Biomol Spectrosc

March 2025

Lancaster Medical School, Lancaster University, LA1 4AT, United Kingdom; Bristol School of Anatomy, Bristol University, BS2 8EJ, United Kingdom. Electronic address:

Background: The NHS spends £4.3 billion annually to address musculoskeletal conditions, encompassing age-related bone disorders like osteoarthritis and osteoporosis. Traditional X-ray diagnostic methods are commonly employed for bone disorder diagnosis, primarily assessing gross anatomical bone structure changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!