Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
By combining a first-principles periodic density functional theory calculation of adsorbate resonance widths with a many-body dynamical theory of charge transfer, we assess charge-transfer rates for ions scattering off metal surfaces. This goes beyond previous approaches, which have been limited to modeling the surfaces with either static potentials or finite clusters. Here we consider Li(+) scattering from an Al(001) surface. We show how the Li 2s orbital hybridizes with metal valence bands, near the surface, increasing the width of the 2s energy level. This in turn affects the charge-transfer rates between the ion and the metal surface. Our predictions for Li(+)-Al(001) scattering yield the correct angular dependence of the fraction of neutral Li atoms formed when compared to experiment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.1777218 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!