A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Probing the structure and dynamics of end-grafted flexible polymer chain layers by combined atomic force-electrochemical microscopy. Cyclic voltammetry within nanometer-thick macromolecular poly(ethylene glycol) layers. | LitMetric

The combined atomic force-electrochemical microscopy (AFM-SECM) technique was used in aqueous solution to determine both the static and dynamical properties of nanometer-thick monolayers of poly(ethylene glycol) (PEG) chains end-grafted to a gold substrate surface. Approach of a microelectrode tip from a redox end-labeled PEG layer triggered a tip-to-substrate cycling motion of the chains' free ends as a result of the redox heads' oxidation at the tip and re-reduction at the substrate surface. As few as approximately 200 chains at a time could be addressed in such a way. Quantitative analysis of the data, in the light of a simple model of elastic bounded diffusion SECM positive feedback, gave access to the end-tethered polymer layer thickness and the end-to-end diffusion coefficient of the chains. The thickness of the grafted PEG layer was shown to increase with the chain surface coverage, while the end-to-end diffusion coefficient was found to be constant and close to the one predicted by Rouse dynamics. At close tip-substrate separation, slowing of the chains' motion, as a consequence of their vertical confinement within the tip-substrate gap, was observed and quantitatively modeled.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0493502DOI Listing

Publication Analysis

Top Keywords

layers combined
8
combined atomic
8
atomic force-electrochemical
8
force-electrochemical microscopy
8
polyethylene glycol
8
substrate surface
8
peg layer
8
end-to-end diffusion
8
diffusion coefficient
8
probing structure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!