The verification of the correctness of planned and executed treatments is imperative for safety in radiotherapy. The purpose of the present work is to describe and evaluate the quality assurance (QA) procedures for patient dosimetry implemented at the boron neutron capture therapy (BNCT) facility at Studsvik, Sweden. The dosimetric complexity of the mixed neutron-photon field during BNCT suggests a careful verification of routine procedures, specifically the treatment planning calculations. In the present study, two methods for QA of patient dosimetry are presented. The first is executed prior to radiotherapy and involves an independent check of the planned absorbed dose to be delivered to a point in the patient for each treatment field. The second QA procedure involves in vivo dosimetry measurements using post-treatment activation analysis. Absorbed dose conversion factors taking the difference in material composition and geometry of the patient and the PMMA phantom used for reference dosimetry were determined using the Monte Carlo method. The agreement of the QA procedure prior to radiotherapy reveals an acceptably small deviation for 60 treatment fields of +/-4.2% (1 SD), while the in vivo dosimetry method presented may benefit from improvements, as the deviations observed were quite substantial (+/- 12%, 1 SD), and were unlikely to be due to actual errors in the clinical dosimetry
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02841860410031390 | DOI Listing |
Nanomaterials (Basel)
January 2025
Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada.
Monte Carlo (MC) simulations have become important in advancing nanoparticle (NP)-based applications for cancer imaging and therapy. This review explores the critical role of MC simulations in modeling complex biological interactions, optimizing NP designs, and enhancing the precision of therapeutic and diagnostic strategies. Key findings highlight the ability of MC simulations to predict NP bio-distribution, radiation dosimetry, and treatment efficacy, providing a robust framework for addressing the stochastic nature of biological systems.
View Article and Find Full Text PDFTomography
January 2025
Medical Physics Unit, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy.
Background: Computed tomography scans are widely used in everyday medical practice due to speed, image reliability, and detectability of a wide range of pathologies. Each scan exposes the patient to a radiation dose, and performing a fast estimation of the effective dose (E) is an important step for radiological safety. The aim of this work is to estimate E from patient and CT acquisition parameters in the absence of a dose-tracking software exploiting machine learning.
View Article and Find Full Text PDFBackground: Hypothyroidism is a common sequela after radiotherapy for nasopharyngeal carcinoma (NPC). Magnetic resonance imaging (MRI) has gained prominence in thyroid imaging, leveraging its non-ionizing radiation, high spatial resolution, multiparameter and multidirectional imaging. Few previous studies have investigated the evaluation of radiation-induced thyroid injury by MRI.
View Article and Find Full Text PDFBMC Med
January 2025
Department of Oncology, University of Oxford, Oxford, UK.
Background: The clinical translation of positron emission tomography (PET) radiotracers for cancer management presents complex challenges. We have developed consensus-based recommendations for preclinical and clinical assessment of novel and established radiotracers, applied to image different cancer types, to improve the standardisation of translational methodologies and accelerate clinical implementation.
Methods: A consensus process was developed using the RAND/UCLA Appropriateness Method (RAM) to gather insights from a multidisciplinary panel of 38 key stakeholders on the appropriateness of preclinical and clinical methodologies and stakeholder engagement for PET radiotracer translation.
BMC Cardiovasc Disord
January 2025
Department of Computed Tomography and Magnetic Resonance, Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
Objectives: This study aimed to evaluate the feasibility and accuracy of non-electrocardiogram (ECG)-triggered chest low-dose computed tomography (LDCT) with a kV-independent reconstruction algorithm in assessing coronary artery calcification (CAC) degree and cardiovascular disease risk in patients receiving maintenance hemodialysis (MHD).
Methods: In total, 181 patients receiving MHD who needed chest CT and coronary artery calcium score (CACS) scannings sequentially underwent non-ECG-triggered, automated tube voltage selection, high-pitch chest LDCT with a kV-independent reconstruction algorithm and ECG-triggered standard CACS scannings. Then, the image quality, radiation doses, Agatston scores (ASs), and cardiac risk classifications of the two scans were compared.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!