The actions of peptidase inhibitors derived from Streptomycete on human cathepsin A (hCath A), yeast carboxypeptidase Y (CPY), and wheat carboxypeptidase II (CPW) were analyzed comparatively. Lactacystin and omuralide (clasto-lactacystin beta-lactone), well-known cytoplasmic proteasome inhibitors, both had a potent and non-competitive inhibitory effect on these homologous serine carboxypeptidases, although they inhibited CPW and hCath A more effectively than CPY in vitro. Ebelactone B exhibited a mixed non-competitive inhibitory effect and selectivity for CPY. Piperastatin A showed competitive inhibition of CPY and hCath A but had little effect on CPW. In contrast, chymostatin inhibited CPW efficiently, while it had less effect on hCath A and CPY. In cell culture system, lactacystin was the most potent as to inactivation of the intralysosomal recombinant hCath A activity expressed in a genetically engineered fibroblastic cell line with galactosialidosis (hCath A deficiency). These results suggest that the specific inhibitory effects of lactacystin and its derivatives on hCath A might be applicable to elucidate the pathophysiological roles in the human deficinecy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.7164/antibiotics.57.316 | DOI Listing |
Biochim Biophys Acta Mol Cell Biol Lipids
January 2025
Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
The synthesis of n-3 and n-6 polyunsaturated acids (PUFAs) is associated with physiological functions in mammals, being catalyzed by Δ-5D and Δ-6D desaturases and elongases Elovl-2 and Elovl-5. In this context, we aimed to study the chief kinetic features of PUFA liver anabolism, looking upon (i) the time-dependency for the specific activity of Δ-6D, Δ-5D, Elovl2, Elovl2/5 and Elovl5, using n-3 and n-6 precursors between 0 and 240 min ex vivo in mouse liver.; and (ii) the specific activity-substrate (α-linolenic acid; ALA) concentration responses of Δ-6D in the absence and presence of linoleic acid (LA), arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), an enzyme regarded as the rate-limiting step in PUFA anabolism.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thailand.
Background: Edible insects are used for consumption and traditional medicine due to their rich bioactive compounds. This study examined the bioactive compounds and inhibitory effects of crude extracts from Bombyx mori and Omphisa fuscidentalis on α-glucosidase, α-amylase, acetylcholinesterase (AChE), and tyrosinase. Fatty acids, including n-hexadecanoic acid and oleic acid, were identified in the extracts and evaluated for their inhibitory potential against the enzymes in vitro and in silico.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China. Electronic address:
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by elevated blood glucose levels, generally due to defects of insulin action or secretion. Inhibition of α-glucosidase, an enzyme responsible for carbohydrate degradation, is a promising strategy for managing postprandial hyperglycemia in diabetic patients. In this study, two new C-linked diarylheptanoid dimers, kaemgalanganols A (1) and B (2), were isolated from K.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China. Electronic address:
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), an oxidative derivative of tire anti-degradant, has been linked to mortality in coho salmon (Oncorhynchus kisutch) and has exhibited potential human toxicity. Hence, exploring how 6PPD-Q interacts with biomacromolecules like enzymes is indispensable to assess its human toxicity and elucidate its mechanism of action. This investigation aims to explore the impact of 6PPD-Q on lactate dehydrogenase (LDH) through various methods.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
Angiotensin-converting enzyme (ACE) inhibitory peptides exhibit antihypertensive effects by inhibiting ACE activity, and the study of the interaction between ACEs and inhibitory peptides is important for exploring new therapeutic strategies. In this study, the ACE-inhibitory peptide isolated from casein hydrolysate with the amino acid sequence Leu-Leu-Tyr (LLY) exhibited high ACE-inhibitory activity and stability, which holds significant implications for biochemistry and pharmaceutical applications. Furthermore, systematic investigations were conducted on the interaction between ACE and LLY through various approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!