A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design and performance characterization strategy using modeling for biofiltration control of odorous hydrogen sulfide. | LitMetric

Design and performance characterization strategy using modeling for biofiltration control of odorous hydrogen sulfide.

J Air Waste Manag Assoc

Department of Civil and Environmental Engineering, Michigan Technological University, Houghton, Michigan 49931, USA.

Published: July 2004

Biofilter, dynamic modeling software characterizing contaminant removal via biofiltration, was used in the preliminary design of a biofilter to treat odorous hydrogen sulfide (H2S). Steady-state model simulations were run to generate performance plots for various influent concentrations, loadings, residence times, media sizes, and temperatures. Although elimination capacity and removal efficiency frequently are used to characterize biofilter performance, effluent concentration can be used to characterize performance when treating to a target effluent concentration. Model simulations illustrate that, at a given temperature, a biofilter cannot reduce H2S emissions below a minimum value, no matter how large the biofilter or how long the residence time. However, a higher biofilter temperature results in lower effluent H2S concentrations. Because dynamic model simulations show that shock loading can significantly increase the effluent concentration above values predicted by the steady-state model simulations, it is recommended that, to consistently meet treatment objectives, dynamic feed conditions should be considered. This study illustrates that modeling can serve as a valuable tool in the design and performance optimization of biofilters.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10473289.2004.10470955DOI Listing

Publication Analysis

Top Keywords

model simulations
16
effluent concentration
12
design performance
8
odorous hydrogen
8
hydrogen sulfide
8
steady-state model
8
biofilter
6
performance characterization
4
characterization strategy
4
strategy modeling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!