There is a need for improvement of the commonly used adenovirus vectors based on serotype 5. This study was performed on three adenovirus serotypes with a CAR-binding motif (Ad4p, Ad5p and Ad17p) and three non-CAR-binding serotypes (Ad11p, Ad16p and Ad21p). The capacity of these alternative adenovirus vector candidates to deliver DNA into low-passage glioma cell lines from seven different donors was evaluated. The non-CAR-binding serotype Ad16p was the most efficient serotype with regard to import of its DNA, as well as initiation of hexon protein expression. Ad16p established hexon expression in 60-80 % of the cell population in gliomas from all donors tested. The other non-CAR-binding serotypes, Ad11p and Ad21p, showed hexon expression in 25-60 and 40-80 % of cells, respectively. The corresponding figure for the best CAR-binding serotype, Ad5p, was only 25-65 %, indicating greater variability between cells from different donors than serotype Ad16p had. The other CAR-binding serotypes, Ad4p and Ad17p, were refractory to some of the gliomas, giving a maximum of only 45 and 40 % hexon expression, respectively, in the most permissive cells. Interestingly, the transduction capacity of the CAR-binding serotypes was not correlated to the level of CAR expression on the cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/vir.0.80084-0 | DOI Listing |
Viruses
November 2024
Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98109, USA.
Certain species D human adenoviruses (HAdV-D19, -D37, and -D64) are causative agents of epidemic keratoconjunctivitis. HAdV-D37 has previously been shown to bind CD46 (membrane cofactor protein) and sialic acid as adhesion receptors. HAdV-D64 is genetically highly similar to HAdV-D37, with an identical fiber protein sequence, but differs substantially in its penton base and hexon proteins, two other major capsid components, due to genetic recombination.
View Article and Find Full Text PDFRespir Res
December 2024
Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, 400014, China.
Background: HAdV-7 is a prevalent pathogen that can cause severe pneumonia in children. Previous studies have shown a significant increase in serum levels of vascular permeability factor (VPF/VEGF) and viral load in pediatric patients with fatal HAdV-7 infection, suggesting potential damage to the pulmonary vascular endothelium. Further research is necessary to elucidate the underlying mechanism.
View Article and Find Full Text PDFVirol J
November 2024
Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
Background: Human adenovirus type 7 (HAdV7) has become a major public health threat due to its widespread transmission, severe associated pneumonia, and a lack of effective anti-HAdV7 drugs. The aim of the current study is to design a humanized monoclonal antibody (mAb) demonstrating efficacy against HAdV-7 infections in vitro and in vivo.
Methods: The humanized neutralizing antibody, 3G5-hu, was derived from the murine mAb 3G5.
Int J Mol Sci
October 2024
Laboratory of Pharmaceutics and Biopharmaceutics, Showa Pharmaceutical University, Tokyo 194-8543, Japan.
Numerous gene therapy drugs for cancer have received global approval, yet their efficacy against solid tumors remains inadequate. Our previous research indicated that the fiber protein, a component of the adenovirus capsid, can propagate from infected cells to neighboring cells that express the adenovirus receptor. We hypothesize that merging this fiber protein with an anti-cancer protein could enable the anti-cancer protein to disseminate around the transfected cells, presenting a novel approach to cancer gene therapy.
View Article and Find Full Text PDFVirol J
October 2024
Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!