A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prions can infect primary cultured neurons and astrocytes and promote neuronal cell death. | LitMetric

Prions can infect primary cultured neurons and astrocytes and promote neuronal cell death.

Proc Natl Acad Sci U S A

Unité de Virologie Immunologie Moléculaires, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France.

Published: August 2004

Transmissible spongiform encephalopathies arise as a consequence of infection of the central nervous system by prions, where neurons and glial cells are regarded as primary targets. Neuronal loss and gliosis, associated with the accumulation of misfolded prion protein (PrP), are hallmarks of prion diseases; yet the mechanisms underlying such disorders remain unclear. Here we introduced a cell system based on primary cerebellar cultures established from transgenic mice expressing ovine PrP and then exposed to sheep scrapie agent. Upon exposure to low doses of infectious agent, such cultures, unlike cultures originating from PrP null mice, were found to accumulate de novo abnormal PrP and infectivity, as assessed by mouse bioassay. Importantly, using astrocyte and neuron/astrocyte cocultures, both cell types were found capable of sustaining efficient prion propagation independently, leading to the production of proteinase K-resistant PrP of the same electrophoretic profile as in diseased brain. Moreover, contrasting with data obtained in chronically infected cell lines, late-occurring apoptosis was consistently demonstrated in the infected neuronal cultures. Our results provide evidence that primary cultured neural cells, including postmitotic neurons, are permissive to prion replication, thus establishing an approach to study the mechanisms involved in prion-triggered neurodegeneration at a cellular level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC514468PMC
http://dx.doi.org/10.1073/pnas.0402725101DOI Listing

Publication Analysis

Top Keywords

primary cultured
8
prp
5
prions infect
4
primary
4
infect primary
4
cultured neurons
4
neurons astrocytes
4
astrocytes promote
4
promote neuronal
4
cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!