After earlier studies in which secretion of aldosterone was demonstrated to be important in rat arterial smooth muscle cell (RASMC) proliferation in vitro, the presence of both 11beta-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2) gene transcription were shown in these cells by real-time reverse transcription-polymerase chain reaction (RT-PCR). In proliferation studies, tritiated thymidine incorporation into RASMC and RASMC cell number were both significantly increased by angiotensin II (Ang II) (10(-7) mol/L) compared with controls (P<0.01), but this effect was inhibited by the 3beta-hydroxysteroid-dehydrogenase inhibitor trilostane (10(-6) mol/L and 10(-5) mol/L, P<0.05). Aldosterone alone added to RASMC did not significantly change tritiated thymidine incorporation when compared with controls, but the Ang II-induced increase was significantly enhanced by aldosterone at 10(-10) mol/L and 10(-8) mol/L (P<0.05). Neither corticosterone nor 18-hydroxydeoxycorticosterone had any such potentiating effect. RT-PCR analysis and real-time quantitative RT-PCR revealed an increase of Ang II type-1 (AT1) receptor mRNA in RASMC treated by aldosterone (10(-8) mol/L) compared with untreated controls, and this was correlated with a small but significant increase in AT1 receptor protein (P<0.05), as assessed by immunoblotting analysis. These data confirm that steroid production by RASMC is critical in the response to Ang II, and the data support the view that aldosterone specifically is required for the full proliferative response to Ang II in RASMC. One way it may act is by modulating the expression and functions of the AT1 receptor.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.HYP.0000140771.21243.edDOI Listing

Publication Analysis

Top Keywords

rat arterial
8
arterial smooth
8
smooth muscle
8
muscle cell
8
mechanism aldosterone
4
aldosterone potentiation
4
potentiation angiotensin
4
angiotensin ii-stimulated
4
ii-stimulated rat
4
cell proliferation
4

Similar Publications

Background: Microsurgery demands an intensive period of skill acquisition due to its inherent complexity. The development and implementation of innovative training methods are essential for enhancing microsurgical outcomes. This study aimed to evaluate the impact of a simulation training program on the clinical results of fingertip replantation surgeries.

View Article and Find Full Text PDF

In modern war theaters, exposures to blast overpressures are one of the most common causes of brain injury. These pervasive events result in acute and chronic cerebrovascular degenerative processes. Using a rat model of blast-induced mild traumatic brain injury, we identified intramural periarterial hematomas as early primary acute lesions induced by blast exposures.

View Article and Find Full Text PDF

Purpose: This study aimed to assess the protective effect of a clinical dose esketamine on cerebral ischemia/reperfusion (I/R) injury and to reveal the potential mechanisms associated with microglial polarization and autophagy.

Methods: Experimental cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in adult rats and simulated by oxygen-glucose deprivation (OGD) in BV-2 microglial cells. Neurological and sensorimotor function, cerebral infarct volume, histopathological changes, mitochondrial morphological changes, and apoptosis of ischemic brain tissues were assessed in the presence or absence of esketamine and the autophagy inducer rapamycin.

View Article and Find Full Text PDF

Objective: This study focuses on the development and evaluation of nanostructured lipid carriers (NLCs) loaded with aloperine as a potential therapeutic approach for the treatment of pulmonary arterial hypertension.

Methods: The NLCs were designed to enhance the solubility, stability, and bioavailability of aloperine, a compound with vasodilatory and anti-inflammatory properties. Through a series of experiments including single-factor experimentation, transmission electron microscopy, high-performance liquid chromatography, in vivo pharmacokinetics, and tissue distribution studies, we assessed the physicochemical properties, drug release profiles, and in vitro and in vivo performance of this novel nanocarrier.

View Article and Find Full Text PDF

Background: Growing evidence indicates that disruptions in mitochondrial quality management contribute to the development of acute kidney injury (AKI), incomplete or maladaptive kidney repair, and chronic kidney disease. However, the temporal dynamics of mitochondrial quality control alterations in relation to renal injury and its recovery remain poorly understood and are addressed in this manuscript.

Method: ology: Male Wistar rats (n = 60) were subjected to varying durations of ischemia and reperfusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!