To better conceptualize the mechanism underlying the evolution of synonymous codons, we have analysed intragenic codon usage in chosen "regions" of some mouse and human genes. We divided a given gene into two regions: one consisting of a trinucleotide repeat (TNR) and the other consisting of the "rest of the coding region" (RCR). Usually, a TNR is composed of a repetitive single codon, which may reflect its frequency in a gene. In contrast, a non-random frequency of a codon in the RCR versus TNR (or vice versa) of a gene should indicate a bias for that codon within the TNR. We examined this scenario by comparing codon frequency between the RCR and the cognate TNR(s) for a set of human and mouse genes. A TNR length of six amino acids or more was used to identify genes from the Genbank database. Twenty nine human and twenty one mouse genes containing TNRs coding for nine different amino acid runs were identified. The ratio of codon frequency in a TNR versus the corresponding RCR was expressed as "fold change" which was also regarded as a measure of codon bias (defined as preferential use either in TNR or in RCR). Chi-square values were then determined from the distribution of codon frequency in a TNR vs. the cognate RCR. At p<0.001, 22% and 27%, respectively, of human and mouse TNRs showed codon bias. Greater than 40% of the TNRs (29 out of 69 in human, and 18 of 42 in mouse) showed codon bias at p<0.05. In addition, we identify eight single-codon TNRs in mouse and ten in human genes. Thus, our results show intragenic codon bias in both mouse and human genes expressed in diverse tissue types. Since our results are independent of the Codon Adaptation Index (CAI) and starvation CAI, and since the tRNA repertoire in a cell or in a tissue is constant, our data suggest that other constraints besides tRNA abundance played a role in creating intragenic codon bias in these genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2004.05.003 | DOI Listing |
Alzheimers Dement
December 2024
School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
Background: The common APOE2/E3/E4 polymorphism, the strongest risk factor for Alzheimer's disease (AD), is determined by two-site haplotypes at codons 112 (Cys>Arg) and 158 (Arg>Cys), resulting into six genotypes. Due to strong linkage disequilibrium between the two sites, 3 of the 4 expected haplotypes (E2, E3, E4) have been observed and extensively studied in relation to AD risk. Compared to the most common haplotype of E3 (Cys112 - Arg158), E4 (Arg112 - Arg 158) and E2 (Cys112 - Cys158) haplotypes are determined by a single-point mutation at codons 112 and 158, respectively.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Computer Science, University of Haifa, Haifa 3303221, Israel.
Selective pressure acts on the codon use, optimizing multiple, overlapping signals that are only partially understood. We trained AI models to predict codons given their amino acid sequence in the eukaryotes and and the bacteria and to study the extent to which we can learn patterns in naturally occurring codons to improve predictions. We trained our models on a subset of the proteins and evaluated their predictions on large, separate sets of proteins of varying lengths and expression levels.
View Article and Find Full Text PDFJ Skin Cancer
December 2024
Scientific Department, Medical Laboratory CSD, Kyiv, Ukraine.
Point mutations at codon 600 of the BRAF oncogene are the most common alterations in cutaneous melanoma (CM). Assessment of BRAF status allows to personalize patient management, though the affordability of molecular testing is limited in some countries. This study aimed to develop a model for predicting alteration in BRAF based on routinely available clinical and histological data.
View Article and Find Full Text PDFMalays J Pathol
December 2024
National Institutes of Health, Institute for Medical Research, Cancer Research Centre, Haematology Unit, 40170 Shah Alam, Selangor, Malaysia.
Introduction: The emergence of mutations in the BCR::ABL1 kinase domain (KD) impairs imatinib mesylate (IM) binding capacity, thus contributing to IM resistance. Identification of these mutations is important for treatment decisions and precision medicine in chronic myeloid leukaemia (CML) patients. Our study aims to determine the frequency of BCR::ABL1 KD mutations in CML patients with IM resistance.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Virus and Cellular Stress Unit, Department of Virology, Université Paris Cité, Institut Pasteur, 28 rue du Dr. Roux, F-75724 Paris cedex 15, France. Electronic address:
Perturbation of the deoxyribonucleotide triphosphate (dNTP) pool is recognized for contributing to the mutagenic processes involved in oncogenesis. The RAS gene family encodes well characterized oncoproteins whose structure and function are among the most frequently altered in several cancers. In this work, we show that fluctuation of the dNTP pool induces CG->TA mutations across the whole genome, including RAS gene at codons for glycine 12 and 13, known hotspots in cancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!