The clinical use of autologous stem cell transplants for the treatment of refractory severe autoimmune diseases was preceded by convincing proof of its underlying principle in animal models. The various categories of experimental autoimmune disease in laboratory rodents are briefly described here, and the rationale that was used in the selection of suitable experimental autoimmune diseases for translational research is explained. The two models that provided the bulk of the data needed for designing the initial clinical treatment protocols were adjuvant arthritis (AA) and experimental allergic encephalomyelitis (EAE), which were both induced in Buffalo rats. In this strain, AA is manifested as a chronic, progressive, systemic polyarthritis and EAE as a chronic, remitting/relapsing form of encephalomyelitis resembling multiple sclerosis. Both diseases can be cured with autologous stem cell transplantation provided that adequate conditioning is given and that the disease has not yet progressed to the stage of 'scarring'. It is basically the inflammatory stages that respond well to this therapy. The success of treatment depends on how completely the autoantigen-specific activated T-lymphocytes and memory cells are eradicated. Because of a lack of information on the nature of the autoantigens involved in human disease and on the size of those cell populations in the animal models as well as in humans, this aspect of translation is difficult. The experiments have, however, provided important guidelines. High-dose conditioning regimens yield better results than low-dose conditioning, certain conditioning agents perform better than others, and care should be taken not to reintroduce too many T-cells with the autologous graft. The clinical results obtained so far indicate a high predictive power of these two animal models, which are therefore recommended strongly for additional preclinical studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.beha.2004.04.003 | DOI Listing |
Exp Hematol Oncol
January 2025
Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
Myelodysplastic Syndromes (MDS) represent a group of heterogeneous myeloid clonal diseases derived from aberrant hematopoietic stem/progenitor cells. Enhancer of zeste homolog 2 (EZH2) is an important regulator in gene expression through methyltransferase-dependent or methyltransferase-independent mechanisms. Herein, we found EZH2 inhibition led to MDS cell pyroptosis through RNA Helicase A (RHA) down-regulation induced overexpression of S100A9, a key regulator of inflammasome activation and pyroptosis.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy.
The generation of retinal models from human induced pluripotent stem cells holds significant potential for advancing our understanding of retinal development, neurodegeneration, and the in vitro modeling of neurodegenerative disorders. The retina, as an accessible part of the central nervous system, offers a unique window into these processes, making it invaluable for both study and early diagnosis. This study investigates the impact of the Frontotemporal Dementia-linked IVS 10 + 16 MAPT mutation on retinal development and function using 2D and 3D retinal models derived from human induced pluripotent stem cells.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
Hypertrophic scar (HS) is a common fibroproliferative disorders with no fully effective treatments. The conversion of fibroblasts to myofibroblasts is known to play a critical role in HS formation, making it essential to identify molecules that promote myofibroblast dedifferentiation and to elucidate their underlying mechanisms. In this study, we used comparative transcriptomics and single-cell sequencing to identify key molecules and pathways that mediate fibrosis and myofibroblast transdifferentiation.
View Article and Find Full Text PDFCardiovasc Diabetol
January 2025
Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, 100029, Beijing, China.
Introduction: Bone marrow-derived mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are widely used for therapeutic purposes in preclinical studies. However, their utility in treating diabetes-associated atherosclerosis remains largely unexplored. Here, we aimed to characterize BMSC-EV-mediated regulation of autophagy and macrophage polarization.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
Department of Stem Cells & Regenerative Medicine, Centre for Interdisciplinary Research, D Y Patil Education Society (Deemed to be University), Kolhapur, India.
Bone tissue engineering is a promising field that aims to rebuild the bone tissue using biomaterials, cells, and signaling molecules. Materials like natural and synthetic polymers, inorganic materials, and composite materials are used to create scaffolds that mimic the hierarchical microstructure of bone. Stem cells, particularly mesenchymal stem cells (MSCs), play a crucial role in bone tissue engineering by promoting tissue regeneration and modulating the immune response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!