Membrane transport plays a leading role in a wide spectrum of cellular and subcellular pathways, including multidrug resistance (MDR), cellular signaling, and cell-cell communication. Pseudomonas aeruginosa is renowned for its intriguing membrane transport mechanisms, such as the interplay of membrane permeability and extrusion machinery, leading to selective accumulation of specific intracellular substances and MDR. Despite extensive studies, the mechanisms of membrane transport in living microbial cells remain incompletely understood. In this study, we directly measure real-time change of membrane permeability and pore sizes of P. aeruginosa at the nanometer scale using the intrinsic color index (surface plasmon resonance spectra) of silver (Ag) nanoparticles as the nanometer size index probes. The results show that Ag nanoparticles with sizes ranging up to 80 nm are accumulated in living microbial cells, demonstrating that these Ag nanoparticles transport through the inner and outer membrane of the cells. In addition, a greater number of larger intracellular Ag nanoparticles are observed in the cells as chloramphenicol concentration increases, suggesting that chloramphenicol increases membrane permeability and porosity. Furthermore, studies of mutants (nalB-1 and DeltaABM) show that the accumulation rate of intracellular Ag nanoparticles depends on the expression level of the extrusion pump (MexAB-OprM), suggesting that the extrusion pump plays an important role in controlling the accumulation of Ag nanoparticles in living cells. Moreover, the accumulation kinetics measured by Ag nanoparticles are similar to those measured using a small fluorescent molecule (EtBr), eliminating the possibility of steric and size effects of Ag nanoparticle probes. Susceptibility measurements also suggest that a low concentration of Ag nanoparticles (1.3 pM) does not create significant toxicity for the cells, further validating that single Ag nanoparticles (1.3 pM) can be used as biocompatible nanoprobes for the study of membrane transport kinetics in living microbial cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi036231a | DOI Listing |
Biophys J
January 2025
Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany. Electronic address:
Translocation across barriers and through constrictions is a mechanism that is often used in vivo for transporting material between compartments. A specific example is apicomplexan parasites invading host cells through the tight junction that acts as a pore, and a similar barrier crossing is involved in drug delivery using lipid vesicles penetrating intact skin. Here, we use triangulated membranes and energy minimization to study the translocation of vesicles through pores with fixed radii.
View Article and Find Full Text PDFNat Commun
January 2025
School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China.
The high performance of two-dimensional (2D) channel membranes is generally achieved by preparing ultrathin or forming short channels with less tortuous transport through self-assembly of small flakes, demonstrating potential for highly efficient water desalination and purification, gas and ion separation, and organic solvent waste treatment. Here, we report the construction of vertical channels in graphene oxide (GO) membrane based on a substrate template with asymmetric pores. The membranes achieved water permeance of 2647 L m h bar while still maintaining an ultrahigh rejection rate of 99.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Department of Neuropsychiatry, Dongguk University, School of Medicine, Seoul, Republic of Korea.
Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
January 2025
Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China. Electronic address:
Chemoresistance is a multifactorial phenomenon and the primary cause to the ineffectiveness of oncotherapy and cancer recurrence. Membrane drug transporters are crucial for drug delivery and disposition in cancer cells. Changes in the expression and functionality of these transporters lead to decreased intracellular accumulation and reduced toxicity of antineoplastic drugs.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Physiology, School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA. Electronic address:
Sarcoplasmic/endoplasmic reticulum Ca-ATPase1 (SERCA1) is responsible for the clearance of cytosolic Ca in skeletal muscle. Due to its vital importance in regulating Ca homeostasis, the regulation of SERCA1 has been intensively studied. Small ankyrin 1 (sAnk1, Ank1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!