Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
ET-743, an experimental antitumor drug with promising activity in sarcoma, breast and ovarian carcinoma, is currently under phase 2 clinical evaluation. It is hepatotoxic in animals and patients. We tested the hypothesis that indole-3-carbinol (I3C), the hydrolysis product of glucosinolates occurring in cruciferous vegetables, may protect against ET-743-induced hepatotoxicity in the female Wistar rat, the animal species with the highest sensitivity toward the adverse hepatic effect of this drug. Hepatotoxicity was adjudged by measurement of plasma levels of bilirubin, alkaline phosphatase (ALP) and aspartate aminotransferase (AST) and by liver histopathology. The effect of I3C on the kinetics of ET-743 in rat plasma and liver was investigated by high-pressure liquid chromatography. The effect of I3C on the antitumor efficacy of ET-743 was explored in rats bearing the 13762 mammary carcinoma. ET-743 (40 microg/kg i.v.) alone caused an elevation of plasma bilirubin, ALP and AST levels and degeneration and patchy focal necrosis of bile duct epithelial cells. Addition of I3C to the diet (0.5%) for 6 days prior to ET-743 administration almost completely abolished manifestations of hepatotoxicity. In contrast, a dietary concentration of 0.1% I3C did not protect, nor did dietary diindolylmethane (0.2%), an acid-catalyzed condensation product of I3C. Ingestion by rats of I3C for 6 days prior to ET-743 (40 microg/kg i.v.) decreased plasma but not hepatic concentrations of ET-743 compared to animals that received ET-743 alone. I3C did not interfere with the antitumor efficacy of ET-743. The results suggest that ingestion of I3C may counteract the unwanted effect of ET-743 in the liver. I3C should be investigated as a hepatoprotectant in patients who receive ET-743 therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ijc.20356 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!