Detection of mitochondrial DNA mutations using temporal temperature gradient gel electrophoresis.

Electrophoresis

Institute for Molecular and Human Genetics, Georgetown University Medical Center, Washington, DC 20007, USA.

Published: August 2004

Mitochondrial disorders are a group of clinically and genetically heterogeneous diseases. Common recurrent mitochondrial DNA (mtDNA) point mutations account for the molecular defects of a small proportion of patients. In order to identify mtDNA mutations, comprehensive mutational analysis of the entire mitochondrial genome is necessary. We developed the temporal temperature gradient gel electrophoresis (TTGE) method to screen for mutations in mtDNA. The entire mitochondrial genome was amplified using 32 pairs of overlapping primers followed by TTGE analysis of the DNA fragments. TTGE method was first validated on 200 DNA fragments containing known mutations or polymorphisms. On TTGE, homoplasmic nucleotide substitutions show a single band shift and heteroplasmic mutations show multiple banding patterns. The known mutations or polymorphisms were correctly identified. TTGE was then used to screen for unknown mutations in the mitochondrial genome. DNA banding patterns, deviated from wild-type, suggestive of either homoplasmic or heteroplasmic mutations, were followed by direct DNA sequencing to identify the mutations. Numerous mutations and polymorphisms were detected. The results demonstrated that TTGE detects and distinguishes heteroplasmic mutations from homoplasmic polymorphisms. It also detects heteroplasmic changes in the background of a homoplasmic polymorphism. Overall, TTGE was proven to be a simple, rapid, sensitive, and effective mutation detection method.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.200406016DOI Listing

Publication Analysis

Top Keywords

mutations
12
mitochondrial genome
12
mutations polymorphisms
12
heteroplasmic mutations
12
mitochondrial dna
8
temporal temperature
8
temperature gradient
8
gradient gel
8
gel electrophoresis
8
entire mitochondrial
8

Similar Publications

Germline inactivating mutations of the SLC25A1 gene contribute to various human disorders, including Velocardiofacial (VCFS), DiGeorge (DGS) syndromes and combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a severe systemic disease characterized by the accumulation of 2-hydroxyglutaric acid (2HG). The mechanisms by which SLC25A1 loss leads to these syndromes remain largely unclear. Here, we describe a mouse model of SLC25A1 deficiency that mimics human VCFS/DGS and D/L-2HGA.

View Article and Find Full Text PDF

This study investigated the potential genotoxic and carcinogenic effects of N-nitrosodimethylamine (NDMA), a hazardous compound found in ranitidine formulations that are used to treat excessive stomach acid. The study first examined the effects of NDMA-contaminated ranitidine formulation on Allium cepa root growth and mitotic activity. The results demonstrated dose-dependent decreases in both root growth and mitotic index indicating genotoxicity and cell division disruption.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) afflicts humans, cats, pigs, and rhesus macaques. Disease sequelae include congestive heart failure, thromboembolism, and sudden cardiac death (SCD). Sarcomeric mutations explain some human and cat cases, however, the molecular basis in rhesus macaques remains unknown.

View Article and Find Full Text PDF

Multi-insertion/deletion polymorphisms (Multi-InDels), as the novel genetic markers, show great potential in forensic research. Whereas, forensic researchers mainly focus on the multi-InDels on the autosomes, which can provide relatively limited information in some complex paternity cases. In this study, a novel X chromosomal multi-InDel multiplex amplification system was designed, containing 22 multi-InDels and one STR locus on the X chromosome.

View Article and Find Full Text PDF

In yeast and mammals, the EXO70 subunit of the exocyst complex plays a key role in mediating the tethering of exocytic vesicles to the plasma membrane (PM). In plants, however, the role of EXO70 in regulating vesicle tethering during exocytosis remains unclear. In land plants, EXO70 has undergone significant evolutionary expansion, resulting in multiple EXO70 paralogues that may allow the exocyst to form various isoforms with specific functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!