Background & Aims: Smad-regulated transcription plays a central role in transforming growth factor (TGF)-beta-induced cell growth inhibition and tumor suppression. Like the Smads, KLF11 is an early response transcription factor that mediates TGF-beta-induced growth inhibition in untransformed epithelial cells. Here, we investigated the functional implications of KLF11 in TGF-beta signaling and transcription in normal epithelial as well as pancreatic cancer cells.
Methods: The effects of KLF11 on TGF-beta signaling and transcription were examined on the levels of reporter transactivation, Smad2 phosphorylation, and expression of endogenous TGF-beta-regulated genes. Promoter analysis, real-time polymerase chain reaction, and coimmunoprecipitation studies were performed to study KLF11-induced and mSin3A corepressor-mediated repression of Smad7. Erk-induced KLF11 phosphorylation was examined in vitro and in vivo, and its impact on KLF11-mSin3A-mediated Smad7 repression was verified in pancreatic cancer cells using site-directed mutagenesis.
Results: KLF11 potentiates TGF-beta signaling by terminating the inhibitory Smad7 loop. Mechanistically, KLF11 represses TGF-beta-induced transcription from the Smad7 promoter by recruiting mSin3a via GC-rich sites. This function is inhibited in pancreatic cancer cells with oncogenic Ras mutations, in which Erk/mitogen-activated protein kinase phosphorylates KLF11, leading to disruption of KLF11-mSin3a interaction. Expression of an Erk-insensitive KLF11 mutant restores both mSin3a binding and Smad7 repression and results in enhanced TGF-beta signaling in pancreatic cancer cells.
Conclusions: These results define a novel mechanism in TGF-beta-regulated gene expression. KLF11 potentiates Smad-signaling activity in normal epithelial cells through termination of the negative feedback loop imposed by Smad7. The fact that this function of KLF11 is inhibited by oncogenic Erk/mitogen-activated protein kinase in pancreatic cancer cells emphasizes the importance of this mechanism for oncogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1053/j.gastro.2004.05.018 | DOI Listing |
Ann Surg Oncol
January 2025
Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center and St. Antonius Hospital Nieuwegein, Utrecht, The Netherlands.
BMC Surg
January 2025
Department of General, Visceral and Transplantation Surgery, LMU University Hospital Munich, LMU Munich, Munich, Germany.
Background: Pancreatic ductal adenocarcinoma (PDAC) typically occurs in an older patient population. Yet, early-onset pancreatic cancer (EOPC) has one of the fastest growing incidence rates. This study investigated the influence of age and tumor location on postoperative morbidity and mortality in a large, real-world dataset.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
Background: Sialic acid-binding immunoglobulin-like lectins (SIGLECs) are widely expressed on immune cell surfaces, play an important role in maintaining immune homeostasis and regulating inflammatory responses, and are increasingly emerging as potential targets for tumor immunotherapy. However, the expression profile and crucial role of SIGLEC11 in gastric cancer (GC) remain unclear. This study aimed to elucidate the prognostic relevance of SIGLEC11 expression and its role in the immune microenvironment in patients with GC.
View Article and Find Full Text PDFSurgery
January 2025
Department of Surgery, Osaka Internationa Cancer Institute, Osaka, Japan.
Dev Cell
December 2024
Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310029, Zhejiang, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310029, Zhejiang, China. Electronic address:
The intestinal microbiota is a key environmental factor in the development of colorectal cancer (CRC). Here, we report that, in the context of mild colonic inflammation, the microbiota protects against colorectal tumorigenesis in mice. This protection is achieved by microbial suppression of the long non-coding RNA (lncRNA) Snhg9.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!