Structure-based analysis of inhibitor binding to Ht-d.

Acta Crystallogr D Biol Crystallogr

Biographics Laboratory, Department of Biochemistry and Biophysics, Texas A & M University, College Station 77843-2128, USA.

Published: July 1995

A theoretical study was performed on the structure of both the native and inhibited metalloproteinase Ht-d (E.C. 3.4.24.42) solved at 2.0 A resolution. The energy maps calculated by program GRID clearly showed the extended binding site of Ht-d and allowed localization and characterization of the pockets S1-S3 and S1'-S3'. The GRID energy contour maps point out the particular shape of the S1' pocket in agreement with experimental density maps and inhibited Ht-d structures. Based on the high degree of sequence homology of the Ht-d active site to that of mammalian metalloproteinases, the characterization of active site pockets was extended to neutrophil collagenase, fibroblast collagenase, stromelysin 1 and 2. Thirty residues of the Ht-d propeptide were modeled and optimized with reference to the Ht-d structure, giving insight to the mechanism of natural inhibition in metalloproteinase proenzymes. Kinetic measurements of Ht-d inhibition by a series of synthetic peptides show, in agreement with our Ht-d propeptide model, the crucial role of cysteine and adjacent residues in the specificity of Ht-d propeptide. This study suggests the structural link between Ht-d and mammalian metalloproteinases, contributing to the understanding of the mechanism of natural and synthetic inhibitor binding to metalloproteinases. Therefore, Ht-d is a good model system for the design of novel inhibitors against these enzymes with enhanced potency and specificity.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S0907444995001910DOI Listing

Publication Analysis

Top Keywords

ht-d
12
ht-d propeptide
12
inhibitor binding
8
active site
8
mammalian metalloproteinases
8
mechanism natural
8
structure-based analysis
4
analysis inhibitor
4
binding ht-d
4
ht-d theoretical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!