The compressive stiffness of an elastic material is traditionally characterized by its Young's modulus. Young's modulus of articular cartilage can be directly measured using unconfined compression geometry by assuming the cartilage to be homogeneous and isotropic. In isotropic materials, Young's modulus can also be determined acoustically by the measurement of sound speed and density of the material. In the present study, acoustic and mechanical techniques, feasible for in vivo measurements, were investigated to quantify the static and dynamic compressive stiffness of bovine articular cartilage in situ. Ultrasound reflection from the cartilage surface, as well as the dynamic modulus were determined with the recently developed ultrasound indentation instrument and compared with the reference mechanical and ultrasound speed measurements in unconfined compression (n=72). In addition, the applicability of manual creep measurements with the ultrasound indentation instrument was evaluated both experimentally and numerically. Our experimental results indicated that the sound speed could predict 47% and 53% of the variation in the Young's modulus and dynamic modulus of cartilage, respectively. The dynamic modulus, as determined manually with the ultrasound indentation instrument, showed significant linear correlations with the reference Young's modulus (r(2)=0.445, p<0.01, n=70) and dynamic modulus (r(2)=0.779, p<0.01, n=70) of the cartilage. Numerical analyses indicated that the creep measurements, conducted manually with the ultrasound indentation instrument, were sensitive to changes in Young's modulus and permeability of the tissue, and were significantly influenced by the tissue thickness. We conclude that acoustic parameters, i.e. ultrasound speed and reflection, are indicative to the intrinsic mechanical properties of the articular cartilage. Ultrasound indentation instrument, when further developed, provides an applicable tool for the in vivo detection of cartilage mechano-acoustic properties. These techniques could promote the diagnostics of osteoarthrosis.
Download full-text PDF |
Source |
---|
Int J Biol Macromol
January 2025
Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China. Electronic address:
Since cartilage injury is often accompanied by subchondral bone damage, conventional single-phase materials cannot accurately simulate the osteochondral structure or repair osteochondral injury. In this work, a gradient gelatin-methacryloyl (GelMA) hydrogel scaffold was constructed by a layer-by-layer stacking method to realize full-thickness regeneration of cartilage, calcified cartilage and subchondral bone. Of note, to surmount the inadequate mechanical property of GelMA hydrogel, nanohydroxyapatite (nHA) was incorporated and further functionalized with hydroxyethyl methacrylate (nHA-hydroxyethyl methacrylate, nHAMA) to enhance the interfacial adhesion with the hydrogel, resulting in better mechanical strength akin to human bone.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
January 2025
Department of Ophthalmology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200001, China.
Purpose: To evaluate the posterior scleral stiffness of different regions in high myopic eyes and to explore its associations with macular choroidal and peripapillary retinal nerve fiber layer (pRNFL) thickness and vasculature.
Methods: Thirty subjects with high myopic eyes and 30 subjects with low myopic eyes were included in this study. The elastic modulus of the macular and peripapillary sclera at the temporal, nasal, superior and inferior regions were determined via shear wave elastography (SWE).
Macromol Rapid Commun
January 2025
Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore, 117575, Singapore.
The modification of thermoplastic polymers is frequently impeded by the inherent contradiction between their toughness and strength. In this study, an effective strategy to significantly improve the mechanical properties of ductile polymers by simply adding a complimentary rigid polymer is introduced. This work uses a semi-crystalline polymer aliphatic polyketone (POK) as the matrix material and a small quantity of polymethyl methacrylate (PMMA) as the rigid polymer, through establishing molecular chain entanglements at the interface to produce POK/PMMA blends with exceptional mechanical property.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel.
Protein-based biomaterials are in high demand due to their high biocompatibility, non-toxicity, and biodegradability. In this study, we explore the bacterial secreted protein A (EspA), which self-assembles into long extracellular filaments, as a potential building block for new protein-based biomaterials. We investigated the morphological and mechanical properties of EspA filaments and how protein engineering can modify them.
View Article and Find Full Text PDFBioact Mater
April 2025
3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal.
Cell sheet (CS)-based approaches hold significant potential for tissue regeneration, relying on the extracellular matrix (ECM) for success. Like in native tissues, the ECM provides structural and biochemical support for cellular homeostasis and function. Effective preservation strategies that maintain ECM integrity are critical to enhance the therapeutic potential of CS-based approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!