Intracellular location and survival of Mycoplasma penetrans within HeLa cells.

Curr Microbiol

Department of Membrane and Ultrastructure Researh, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.

Published: August 2004

Mycoplasma penetrans invades HeLa cells and survives within them for prolonged periods of time. The intracellular distribution of M. penetrans within HeLa cells was studied utilizing the acidotropic dye LysoTracker (green), which permeates cell membranes and upon protonation remains trapped in acidic compartments. The excitation and emission spectra of the green LysoTracker are suitable for colocalization studies with rabbit anti- M. penetrans antibodies and red Cy5 goat anti-rabbit IgG. The images collected by confocal laser scanning microscopy revealed that in the infected HeLa cells almost all Cy5 fluorescent foci (red) were located within the LysoTrack-labelled intracellular compartments, apparently endosomes. Viable mycoplasmas were detected within endosomes for prolonged periods of time, apparently due to a potent antioxidant activity detected in M. penetrans.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-004-4298-3DOI Listing

Publication Analysis

Top Keywords

hela cells
16
mycoplasma penetrans
8
penetrans hela
8
prolonged periods
8
periods time
8
penetrans
5
intracellular location
4
location survival
4
survival mycoplasma
4
hela
4

Similar Publications

Super-resolution microscopy has revolutionized biological imaging, enabling the visualization of structures at the nanometer length scale. Its application in live cells, however, has remained challenging. To address this, we adapted LIVE-PAINT, an approach we established in yeast, for application in live mammalian cells.

View Article and Find Full Text PDF

A-D-A type fluorescent probe with dual quaternary-ammonium-salt anchors for turn on detection of HSA in wide emission gamut.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122 China. Electronic address:

Human serum albumin (HSA) is a key protein implicates in various physiological and pathological conditions such as renal injury, diabetes mellitus. Herein, we report an AIE-active fluorescent probe (DNI-4) for detection of HSA with a "turn on" response covering visible and near-infrared region (500 - 800 nm). Combining with a triphenylamine and two 1,8-naphthalimide moieties, the chromophore segment of DNI-4 forms a "A-D-A" type molecular architecture with the twisted intramolecular charge transfer property.

View Article and Find Full Text PDF

The 40S ribosomal subunit recycling pathway is an integral link in the cellular quality control network, occurring after translational errors have been corrected by the ribosome-associated quality control (RQC) machinery. Despite our understanding of its role, the impact of translation quality control on cellular metabolism remains poorly understood. Here, we reveal a conserved role of the 40S ribosomal subunit recycling (USP10-G3BP1) complex in regulating mitochondrial dynamics and function.

View Article and Find Full Text PDF

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

Plant Compounds Inhibit the Growth of W12 Cervical Precancer Cells Containing Episomal or Integrant HPV DNA; Tanshinone IIA Synergizes with Curcumin in Cervical Cancer Cells.

Viruses

December 2024

Department of Rehabilitation and Regenerative Medicine, College of Physicians and Surgeons, Columbia University, HHSC-1518, 701 W. 168th Street, New York, NY 10032, USA.

This study explores the effects of plant compounds on human papillomavirus (HPV)-induced W12 cervical precancer cells and bioelectric signaling. The aim is to identify effective phytochemicals, both individually and in combination, that can prevent and treat HPV infection and HPV associated cervical cancer. Phytochemicals were tested using growth inhibition, combination, gene expression, RT PCR, and molecular docking assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!