The basic helix-loop-helix transcription factor Neurogenin 3 (NGN3) controls endocrine cell fate specification in uncommitted pancreatic progenitor cells. Ngn3-deficient mice do not develop any islet cells and are diabetic. All the major islet cell types, including insulin-producing beta-cells, derive from Ngn3-positive endocrine progenitor cells. Therefore, the characterization of this population of immature cells is of particular interest for the development of novel strategies for cell replacement therapies in type 1 diabetes. To explore further the biology of islet progenitor cells we have generated a mouse in which Ngn3-expressing cells are labeled with the enhanced yellow fluorescent protein (EYFP) using a knock-add-on strategy. In this approach, the EYFP cDNA is introduced into the 3'-untranslated region of the proendocrine transcription factor, Neurogenin 3, without deleting any endogenous coding or regulatory sequences. In Ngn3(EYFP/+) and Ngn3(EYFP/EYFP) mice, the EYFP protein is targeted to Ngn3-expressing progenitors in the developing pancreas, and islets develop normally. Islet progenitors can be purified from whole embryonic pancreas by fluorescence-activated cell sorting from Ngn3(EYFP/+) mice and their development can be monitored in real time in pancreas explant cultures. These experiments showed that endocrine progenitors can form de novo and expand, in vitro, in the absence of signals from the surrounding mesenchyme, suggesting that endocrine commitment is a default pathway. The Ngn3(EYFP) mice represent a valuable tool to study islet cell development and neogenesis in normal and diabetic animals as well as for the determination of the conditions to generate beta-cells in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/me.2004-0243 | DOI Listing |
Mol Biol Rep
January 2025
Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.
Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.
View Article and Find Full Text PDFGenes Dev
December 2024
Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada;
The nucleolus is a major subnuclear compartment where ribosomal DNA (rDNA) is transcribed and ribosomes are assembled. In addition, recent studies have shown that the nucleolus is a dynamic organizer of chromatin architecture that modulates developmental gene expression. rDNA gene units are assembled into arrays located in the p-arms of five human acrocentric chromosomes.
View Article and Find Full Text PDFGenes Dev
December 2024
Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
Transcription factors (TFs) are indispensable for maintaining cell identity through regulating cell-specific gene expression. Distinct cell identities derived from a common progenitor are frequently perpetuated by shared TFs, yet the mechanisms that enable these TFs to regulate cell-specific targets are poorly characterized. We report that the TF NKX2.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Induced pluripotent stem cell (iPSC)-derived natural killer (NK) cells offer an opportunity for a standardized, off-the-shelf treatment with the potential to treat a wider population of acute myeloid leukaemia (AML) patients than the current standard of care. FT538 iPSC-NKs express a high-affinity, noncleavable CD16 to maximize antibody dependent cellular cytotoxicity, a CD38 knockout to improve metabolic fitness, and an IL-15/IL-15 receptor fusion preventing the need for cytokine administration, the main source of adverse effects in NK cell-based therapies. Here, we sought to evaluate the potential of FT538 iPSC-NKs as a therapy for AML through their effect on AML cell lines and primary AML cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!