The opium alkaloid noscapine is a commonly used antitussive agent available in Europe, Asia, and South America. Although the mechanism by which it suppresses coughing is currently unknown, it is presumed to involve the central nervous system. In addition to its antitussive action, noscapine also binds to tubulin and alters microtubule dynamics in vitro and in vivo. In this study, we show that noscapine inhibits the proliferation of rat C6 glioma cells in vitro (IC(50) = 100 microm) and effectively crosses the blood-brain barrier at rates similar to the ones found for agents such as morphine and [Met]enkephalin that have potent central nervous system activity (P < or = 0.05). Daily oral noscapine treatment (300 mg/kg) administered to immunodeficient mice having stereotactically implanted rat C6 glioblasoma into the striatum revealed a significant reduction of tumor volume (P < or = 0.05). This was achieved with no identifiable toxicity to the duodenum, spleen, liver, or hematopoietic cells as determined by pathological microscopic examination of these tissues and flow cytometry. Furthermore, noscapine treatment resulted in little evidence of toxicity to dorsal root ganglia cultures as measured by inhibition of neurite outgrowth and yielded no evidence of peripheral neuropathy in animals. However, evidence of vasodilation was observed in noscapine-treated brain tissue. These unique properties of noscapine, including its ability to cross the blood-brain barrier, interfere with microtubule dynamics, arrest tumor cell division, reduce tumor growth, and minimally affect other dividing tissues and peripheral nerves, warrant additional investigation of its therapeutic potential.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-04-0360DOI Listing

Publication Analysis

Top Keywords

blood-brain barrier
12
crosses blood-brain
8
central nervous
8
nervous system
8
microtubule dynamics
8
noscapine treatment
8
noscapine
7
noscapine crosses
4
barrier inhibits
4
inhibits glioblastoma
4

Similar Publications

Traditional Chinese Medicine Borneol-Based Polymeric Micelles Intracerebral Drug Delivery System for Precisely Pathogenesis-Adaptive Treatment of Ischemic Stroke.

Adv Sci (Weinh)

January 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266003/572024, China.

The scarcity of effective neuroprotective agents and the presence of blood-brain barrier (BBB)-mediated extremely inefficient intracerebral drug delivery are predominant obstacles to the treatment of cerebral ischemic stroke (CIS). Herein, ROS-responsive borneol-based amphiphilic polymeric NPs are constructed by using traditional Chinese medicine borneol as functional blocks that served as surface brain-targeting ligand, inner hydrophobic core for efficient drug loading of membrane-permeable calcium chelator BAPTA-AM, and neuroprotective structural component. In MCAO mice, the nanoformulation (polymer: 3.

View Article and Find Full Text PDF

Purpose Of Review: Using advanced bibliometric analysis, we systematically mapped the most current literature on urban air pollution and neurodevelopmental conditions to identify key patterns and associations. Here, we review the findings from the broader literature by discussing a distilled, validated subset of 44 representative studies.

Recent Findings: Literature highlights a complex relationship between environmental toxins, neurodevelopmental disorders in children, and neurobehavioral pathways involving oxidative stress, neuroinflammation, and protein aggregation.

View Article and Find Full Text PDF

Radioactive brain injury, a severe complication ensuing from radiotherapy for head and neck malignancies, frequently manifests as cognitive impairment and substantially diminishes patients' quality of life. Despite its profound impact, the pathogenesis of this condition remains inadequately elucidated, and efficacious treatments are notably absent in clinical practice. Consequently, contemporary interventions predominantly focus on symptom alleviation rather than achieving a radical cure or reversing the injury process.

View Article and Find Full Text PDF

The central nervous system (CNS) parenchyma has conventionally been believed to lack lymphatic vasculature, likely due to a non-permissive microenvironment that hinders the formation and growth of lymphatic endothelial cells (LECs). Recent findings of ectopic expression of LEC markers including Prospero Homeobox 1 (PROX1), a master regulator of lymphatic differentiation, and the vascular permeability marker Plasmalemma Vesicle Associated Protein (PLVAP), in certain glioblastoma and brain arteriovenous malformations (AVMs), has prompted investigation into their roles in cerebrovascular malformations, tumor environments, and blood-brain barrier (BBB) abnormalities. To explore the relationship between ectopic LEC properties and BBB disruption, we utilized endothelial cell-specific overexpression mutants.

View Article and Find Full Text PDF

Nose to brain strategy coupled to nano vesicular system for natural products delivery: Focus on synaptic plasticity in Alzheimer's disease.

J Pharm Anal

December 2024

Laboratory of Neuropharmacology, EBRI Rita Levi-Montalcini Foundation, Rome, 00161, Italy.

A wide number of natural molecules demonstrated neuroprotective effects on synaptic plasticity defects induced by amyloid-β (Aβ) in and Alzheimer's disease (AD) models, suggesting a possible use in the treatment of this neurodegenerative disorder. However, several compounds, administered parenterally and orally, are unable to reach the brain due to the presence of the blood-brain barrier (BBB) which prevents the passage of external substances, such as proteins, peptides, or phytocompounds, representing a limit to the development of treatment for neurodegenerative diseases, such as AD. The combination of nano vesicular systems, as colloidal systems, and nose to brain (NtB) delivery depicts a new nanotechnological strategy to overtake this limit and to develop new treatment approaches for brain diseases, including the use of natural molecules in combination therapy for AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!