A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Highly specific prediction of phosphorylation sites in proteins. | LitMetric

Highly specific prediction of phosphorylation sites in proteins.

Bioinformatics

CeVis, University of Bremen, Universitaetsallee 29, 28359 Bremen, Germany.

Published: December 2004

Summary: The prediction of significant short functional protein sequences has inherent problems. In predicting phosphorylation sites, problems came from the shortness of phosphorylation sites, the difficulties in maintaining many different predefined models of binding sites, and the difficulties of obtaining highly sensitive predictions and of obtaining predictions with a constant sensitivity and specificity. The algorithm presented in this paper overcomes these problems. The proposed algorithm PHOSITE is based on the case-based sequence analysis. This enables the prediction of phosphorylation sites with constant specificity and sensitivity. Furthermore, this method leads not only to the prediction of phosphorylation sites in general but also predicts the most probable type of kinase involved.

Availability: The tool PHOSITE implementing the presented method can be evaluated under the website http://www.phosite.com.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/bth455DOI Listing

Publication Analysis

Top Keywords

phosphorylation sites
20
prediction phosphorylation
12
sites difficulties
8
sites
6
phosphorylation
5
highly specific
4
prediction
4
specific prediction
4
sites proteins
4
proteins summary
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!