Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice (Oryza sativa L.).

Plant Cell Physiol

Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1312, USA.

Published: July 2004

AI Article Synopsis

  • OsGRF1 is a rice gene that encodes a novel transcriptional regulator, identified alongside eleven homologs in the rice genome.
  • All OsGRF proteins share two conserved domains and are primarily expressed in young, growing tissues, with gibberellic acid increasing the expression of seven of these genes.
  • High levels of OsGRF1 transcripts are found in the shoot apical meristem, suggesting its role as a transcriptional activator involved in regulating vegetative growth in rice.

Article Abstract

OsGRF1 (Oryza sativa GROWTH-REGULATING FACTOR1) is a rice gene encoding a putative novel transcriptional regulator. We identified and characterized eleven homologs of OsGRF1 in the rice genome. All twelve OsGRF proteins have two highly conserved regions, the QLQ (Gln, Leu, Gln) and WRC (Trp, Arg, Cys) domains, and sequences reminiscent of transcription factors. OsGRF genes were preferentially expressed in young and growing tissues, and applied gibberellic acid (GA3) enhanced the expression of seven OsGRF genes. In situ hybridization showed high levels of OsGRF1 transcripts in the shoot apical meristem and in cells surrounding the vasculature of the intercalary meristem. In a GAL4-based yeast assay, the C-terminal region of OsGRF1 was found to have transactivation activity. These results indicate that OsGRF1 acts as a transcriptional activator. Based on the in situ expression pattern of OsGRF1, we postulate that it may be involved in regulating vegetative growth in rice.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pch098DOI Listing

Publication Analysis

Top Keywords

oryza sativa
8
osgrf genes
8
osgrf1
6
genome analysis
4
osgrf
4
analysis osgrf
4
osgrf gene
4
gene family
4
family encoding
4
encoding plant-specific
4

Similar Publications

Background And Aims: Since salinity stress may occur across stages of rice (Oryza sativa L.) crop growth, understanding the effects of salinity at reproductive stage is important although it has been much less studied than at seedling stage.

Methods: In this study, lines from the Rice Diversity Panel 1 (RDP1) and the 3000 Rice Genomes (3KRG) were used to screen morphological and physiological traits, map loci controlling salinity tolerance through genome-wide association studies (GWAS), and identify favorable haplotypes associated with reproductive stage salinity tolerance.

View Article and Find Full Text PDF

Phenological and morphological variation are widely viewed as a pivotal driver of ecological adaptation and speciation. Here, we investigate variation patterns of flowering phenology and morphological traits within and between O. rufipogon and O.

View Article and Find Full Text PDF

To explore the internal factors related to the strong growth and competitive ability of weedy rice during the seedling period, we collected two biotypes of Japonica weedy rice from Northeast China, four biotypes of Indica weedy rice from Eastern China and Southern China, and two biotypes of cultivated rice, Zhendao-8 (ZD-8) and Shanyou-63 (SY-63), which were used as controls in a pot experiment. Under homogeneous garden planting conditions, we measured the vascular bundle size (VBS), vascular bundle number (VBN), leaf thickness (LT), air cavity size (ACS), stomatal size (SS), stomatal density (SD), net photosynthetic rate (Pn) and stomatal conductance (Gs) of the weedy and cultivated rice biotypes. A comprehensive analysis was performed to explore the correlation between the seedling leaf structure and the photosynthetic indices of the biotypes.

View Article and Find Full Text PDF

Shoot-Silicon-Signal protein to regulate root silicon uptake in rice.

Nat Commun

December 2024

Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan.

Plants accumulate silicon to protect them from biotic and abiotic stresses. Especially in rice (Oryza sativa), a typical Si-accumulator, tremendous Si accumulation is indispensable for healthy growth and productivity. Here, we report a shoot-expressed signaling protein, Shoot-Silicon-Signal (SSS), an exceptional homolog of the flowering hormone "florigen" differentiated in Poaceae.

View Article and Find Full Text PDF

CesA proteins response to arsenic stress in rice involves structural and regulatory mechanisms, highlighting the role of BES1/BZR1 transcript levels under arsenate exposure and significant downregulation of BZR1 protein expression. Plants interact with several hazardous metalloids during their life cycle through root and soil connection. One such metalloid, is arsenic and its perilous impact on rice cultivation is a well-known threat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!