The small Tim proteins in the mitochondrial intermembrane space participate in the TIM22 import pathway for assembly of the inner membrane. Assembly of the small TIM complexes requires the conserved "twin CX3C" motif that forms juxtapositional intramolecular disulfide bonds. Here we identify a new intermembrane space protein, Hot13p, as the first component of a pathway that mediates assembly of the small TIM complexes. The small Tim proteins require Hot13p for assembly into a 70-kDa complex in the intermembrane space. Once assembled the small TIM complexes escort hydrophobic inner membrane proteins en route to the TIM22 complex. The mechanism by which the small Tim proteins bind and release substrate is not understood, and we investigated the affect of oxidant/reductant treatment on the TIM22 import pathway. With in organello import studies, oxidizing agents arrest the ADP/ATP carrier (AAC) bound to the Tim9p-Tim10p complex in the intermembrane space; this productive intermediate can be chased into the inner membrane upon subsequent treatment with reductant. Moreover, AAC import is markedly decreased by oxidant treatment in Deltahot13 mitochondria and improved when Hot13p is overexpressed, suggesting Hot13p may function to remodel the small TIM complexes during import. Together these results suggest that the small TIM complexes have a specialized assembly pathway in the intermembrane space and that the local redox state of the TIM complexes may mediate translocation of inner membrane proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M404878200 | DOI Listing |
Bull Math Biol
February 2018
Department of Mathematics, University of British Columbia, Vancouver, V6T 1Z2, Canada.
We apologize for the error in the references.
View Article and Find Full Text PDFBull Math Biol
September 2017
Department of Mathematics, University of British Columbia, Vancouver, V6T 1Z2, Canada.
Molecular motors such as kinesin and dynein are responsible for transporting material along microtubule networks in cells. In many contexts, motor dynamics can be modelled by a system of reaction-advection-diffusion partial differential equations (PDEs). Recently, quasi-steady-state (QSS) methods have been applied to models with linear reactions to approximate the behaviour of the full PDE system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!