AI Article Synopsis

Article Abstract

Temperature-sensitive mutant 2-20/32 of Mycobacterium smegmatis mc(2)155 was isolated and genetically complemented with a Mycobacterium tuberculosis H37Rv DNA fragment that contained a single open reading frame. This open reading frame is designated Rv3265c in the M. tuberculosis H37Rv genome. Rv3265c shows homology to the Escherichia coli gene wbbL, which encodes a dTDP-Rha:alpha-D-GlcNAc-pyrophosphate polyprenol, alpha-3-L-rhamnosyltransferase. In E. coli this enzyme is involved in O-antigen synthesis, but in mycobacteria it is required for the rhamnosyl-containing linker unit responsible for the attachment of the cell wall polymer mycolyl-arabinogalactan to the peptidoglycan. The M. tuberculosis wbbL homologue, encoded by Rv3265c, was shown to be capable of restoring an E. coli K12 strain containing an insertionally inactivated wbbL to O-antigen positive. Likewise, the E. coli wbbL gene allowed 2-20/32 to grow at higher non-permissive temperatures. The rhamnosyltransferase activity of M. tuberculosis WbbL was demonstrated in 2-20/32 as was the loss of this transferase activity in 2-20/32 at elevated temperatures. The wbbL of the temperature-sensitive mutant contained a single-base change that converted what was a proline in mc(2)155 to a serine residue. Exposure of 2-20/32 to higher non-permissive temperatures resulted in bacteria that could not be recovered at the lower permissive temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M407782200DOI Listing

Publication Analysis

Top Keywords

temperature-sensitive mutant
8
tuberculosis h37rv
8
open reading
8
reading frame
8
tuberculosis wbbl
8
higher non-permissive
8
non-permissive temperatures
8
wbbl
6
2-20/32
5
inactivation mycobacterial
4

Similar Publications

Screening a library of temperature-sensitive mutants to identify secretion factors in .

J Bacteriol

January 2025

Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA.

Protein secretion is an essential cell process in bacteria, required for cell envelope biogenesis, export of virulence factors, and acquisition of nutrients, among other important functions. In the Sec secretion pathway, signal peptide-bearing precursors are recognized by the SecA ATPase and pushed across the membrane through a translocon channel made of the proteins SecY, SecE, and SecG. The Sec pathway has been extensively studied in the model organism , but the Sec pathways of other bacteria such as the human pathogen differ in important ways from this model.

View Article and Find Full Text PDF

Some winter rapeseed (Brassica rapa) varieties can endure extremely low temperatures (-20°C to -32°C). However, because of a lack of mutant resources, the molecular mechanisms underlying cold tolerance in B. rapa remain unclear.

View Article and Find Full Text PDF

Magnolol as an Antibacterial Agent Against Drug-resistant Bacteria Targeting Filamentous Temperature-sensitive Mutant Z.

Chem Biodivers

December 2024

State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, P. R. China.

The emergence of multiple drug-resistant bacteria poses critical health threats worldwide. It is urgently needed to develop potent and safe antibacterial agents with novel bactericidal mechanisms to treat these infections. In this study, magnolol was identified as a potential bacterial cell division inhibitor by a cell-based screening approach.

View Article and Find Full Text PDF
Article Synopsis
  • The Arabidopsis var2 mutant, which lacks functional FtsH2, is key for studying the repair process of photosystem II (PSII) in plants.
  • Under cold stress, var2 mutants struggle due to increased membrane viscosity, highlighting the essential need for FtsH2's substrate extraction activity to manage this condition.
  • In contrast, during heat stress, the mutant behaves like normal plants, as increased membrane fluidity allows other FtsH isomers to compensate for the lack of FtsH2, indicating that membrane fluidity significantly affects the function of the FtsH complex under various stress conditions.
View Article and Find Full Text PDF

Nuclear RNAi in C. elegans induces a set of transgenerationally heritable marks of H3K9me3, H3K23me3, and H3K27me3 at the target genes. The function of H3K23me3 in the nuclear RNAi pathway is largely unknown due to the limited knowledge of H3K23 histone methyltransferase (HMT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!