Prophylactic role of phycocyanin: a study of oxalate mediated renal cell injury.

Chem Biol Interact

Department of Medical Biochemistry, Dr. ALM Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600113, India.

Published: August 2004

Oxalate induced renal calculi formation and the associated renal injury is thought to be caused by free radical mediated mechanisms. An in vivo model was used to investigate the effect of phycocyanin (from Spirulina platensis), a known antioxidant, against calcium oxalate urolithiasis. Male Wistar rats were divided into four groups. Hyperoxaluria was induced in two of these groups by intraperitoneal infusion of sodium oxalate (70 mg/kg) and a pretreatment of phycocyanin (100 mg/kg) as a single oral dosage was given, 1h prior to sodium oxalate infusion. An untreated control and drug control (phycocyanin alone) were also included in the study. We observed that phycocyanin significantly controlled the early biochemical changes in calcium oxalate stone formation. The antiurolithic nature of the drug was evaluated by the assessment of urinary risk factors and light microscopic observation of urinary crystals. Renal tubular damage as divulged by urinary marker enzymes (alkaline phosphatase, acid phosphatase and gamma-glutamyl transferase) and histopathological observations such as decreased tubulointerstitial, tubular dilatation and mononuclear inflammatory cells, indicated that renal damage was minimised in drug-pretreated group. Oxalate levels (P < 0.001) and lipid peroxidation (P < 0.001) in kidney tissue were significantly controlled by drug pretreatment, suggesting the ability of phycocyanin to quench the free radicals, thereby preventing the lipid peroxidation mediated tissue damage and oxalate entry. This accounts for the prevention of CaOx stones. Thus, the present analysis revealed the antioxidant and antiurolithic potential of phycocyanin thereby projecting it as a promising therapeutic agent against renal cell injury associated kidney stone formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2004.05.006DOI Listing

Publication Analysis

Top Keywords

oxalate
8
renal cell
8
cell injury
8
calcium oxalate
8
sodium oxalate
8
stone formation
8
lipid peroxidation
8
phycocyanin
7
renal
6
prophylactic role
4

Similar Publications

CO-templated [LnNi] heterometallic compounds for enhanced magnetocaloric effects at low fields.

Dalton Trans

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.

In the history of magnetochemistry development, lanthanide-transition (3d-4f) heterometallic compounds have been considered an attractive candidate for magnetic refrigerants. Herein, a series of heterometallic compounds have been designed and templated by CO anions, that is, {[LnNi(L)(CO)(HO)]·HO} [Ln = Gd (. Gd2Ni) = Sm (.

View Article and Find Full Text PDF

Secondary hyperoxaluria is a metabolic disorder characterized by an increase in urinary oxalate excretion. The etiology may arise from an increase in the intake of oxalate or its precursors, decreased elimination at the digestive level, or heightened renal excretion. Recently, the role of the SLC26A6 transporter in the etiopathogenesis of this disease has been identified.

View Article and Find Full Text PDF

Stability of lead immobilization by Aspergillus niger and fluorapatite under different pH conditions.

Ecotoxicol Environ Saf

January 2025

Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China. Electronic address:

The combination of Aspergillus niger (A. niger) and fluorapatite (FAp) has been applied in lead (Pb) immobilization. However, the different pH can affect the stability of the immobilized Pb minerals.

View Article and Find Full Text PDF

Development and Assessment of a Color-Variable Chlorine Dioxide Slow-Releasing Card for Litchi Preservation.

Foods

January 2025

Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510641, China.

Chlorine dioxide (ClO) gas has attracted considerable attention due to its safety and efficiency. In this study, we successfully developed a color-variable ClO slow-releasing card for postharvest litchi. The optimal ClO slow-releasing card was prepared as follows: Card A was soaked in 2.

View Article and Find Full Text PDF

Effects of Luteolin Treatment on Postharvest Quality and Antioxidant Capacity of Nanfeng Tangerines.

Foods

December 2024

Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruit and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China.

Postharvest quality deterioration is a major factor affecting the economic value and marketing of Nanfeng tangerines. The objective of this study was to explore the effects of luteolin treatment on the postharvest quality and antioxidant capacity of Nanfeng tangerines. We applied 1 g/L and 3 g/L luteolin to fruit after harvest and evaluated the decay rate, postharvest quality, and antioxidant capacity during a 60-day storage period at room temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!