Improved expression, purification, and crystallization of p38alpha MAP kinase.

Protein Expr Purif

Department of Biochemistry, Locus Pharmaceuticals, Inc., Four Valley Square, 512 Township Line Road, Blue Bell, PA 19422, USA.

Published: September 2004

p38alpha mitogen-activated protein (MAP) kinase is widely expressed in many mammalian tissues and is activated as a part of signal transduction cascades that respond to inflammatory stimuli. The activation of p38 is known to trigger various biological effects, including cell death, differentiation, and proliferation. The central role played by p38alpha in cellular signaling events, including those that control a wide range of inflammatory and autoimmune diseases, makes it an attractive drug target. To develop optimized small molecule therapeutics targeting p38alpha, different techniques must be employed for the detailed biochemical, biophysical, and structural characterization of the interactions of p38alpha with lead compounds. These methods typically require large quantities of highly purified p38alpha protein. We describe here an improved expression and purification method for recombinant p38alpha production that reproducibly yields over 70 mg of highly purified protein per liter of shake flask bacterial culture. This yield is significantly higher than that previously reported for p38alpha production in Escherichia coli. We achieved a significant increase in soluble p38alpha protein expression by using the genetically modified E. coli strain BL21 DE3 Rosetta, which is optimized for expression of eukaryotic proteins with codons rarely used in E. coli. The p38alpha protein was purified to near homogeneity using a simple two-step procedure including nickel-chelating Sepharose chromatography followed by anion-exchange chromatography using MonoQ resin. Purified p38alpha was characterized using the standard commercially available small molecule inhibitor SB-203580. The binding association and dissociation rate constants determined by Biacore are in excellent agreement with previously reported values. The purified p38alpha protein was efficiently activated by MKK6 kinase to yield phosphorylated p38alpha. Purified p38alpha protein was also successfully crystallized, producing crystals diffracting to 1.9 angstroms, exceeding the highest resolution for p38alpha reported in the Protein DataBank. The simplicity and efficiency of this approach should prove useful for many laboratories that are interested in production of p38alpha for biochemical and biophysical studies and structure-based drug design.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pep.2004.05.017DOI Listing

Publication Analysis

Top Keywords

p38alpha protein
20
p38alpha
16
purified p38alpha
16
improved expression
8
expression purification
8
map kinase
8
protein
8
small molecule
8
biochemical biophysical
8
highly purified
8

Similar Publications

Chemoproteomic Profiling of for Characterization of Anti-fungal Kinase Inhibitors.

bioRxiv

January 2025

Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

is a growing health concern as the leading causal agent of systemic candidiasis, a life-threatening fungal infection with a mortality rate of ~40% despite best available therapy. Yck2, a fungal casein kinase 1 (CK1) family member, is the cellular target of inhibitors YK-I-02 (YK) and MN-I-157 (MN). Here, multiplexed inhibitor beads paired with mass spectrometry (MIB/MS) employing ATP-competitive kinase inhibitors were used to define the selectivity of these Yck2 inhibitors across the global proteome.

View Article and Find Full Text PDF

Opposing roles of p38α-mediated phosphorylation and PRMT1-mediated arginine methylation in driving TDP-43 proteinopathy.

Cell Rep

January 2025

Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address:

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder typically characterized by insoluble inclusions of hyperphosphorylated TDP-43. The mechanisms underlying toxic TDP-43 accumulation are not understood. Persistent activation of p38 mitogen-activated protein kinase (MAPK) is implicated in ALS.

View Article and Find Full Text PDF

The effect and mechanism of sanguinarine against PCV2 based on the analysis of network pharmacology and TMT quantitative proteomics.

Int J Biol Macromol

January 2025

Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China. Electronic address:

Porcine circovirus type 2 (PCV2) is highly prevalent in nature and serves as the primary pathogen responsible for porcine circovirus-associated disease (PCVD/PCVAD), posing a significant threat to pig production. Currently, vaccination alone could not provide the complete protection for PCV2 infection. The active ingredients of traditional Chinese medicine have shown a positive effect in combating viral infections.

View Article and Find Full Text PDF

The p38α-MK2 signaling axis plays an important role in the inflammatory response of cells. Here, we carried out a series of optimizations on CDD-450, aiming to enhance inhibition of the p38α-MK2 complex and improve pharmacokinetic properties. First, the magic F strategy was utilized to obtain compound , which displayed a 60-fold increase in tumor necrosis factor α inhibition and a 600-fold increase in interleukin-6 inhibition.

View Article and Find Full Text PDF

Reversible protein phosphorylation directs essential cellular processes including cell division, cell growth, cell death, inflammation, and differentiation. Because protein phosphorylation drives diverse diseases, kinases and phosphatases have been targets for drug discovery, with some achieving remarkable clinical success. Most protein kinases are activated by phosphorylation of their activation loops, which shifts the conformational equilibrium of the kinase toward the active state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!