Inhibition of ampicillin-resistant bacteria by novel mono-DNAzymes and di-DNAzyme targeted to beta-lactamase mRNA.

Oligonucleotides

Key Lab for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun City, Jilin Province, 130023, P. R. China.

Published: November 2005

In view of the weakness of antibiotics and the properties of antisense drugs, we applied DNAzymes to the field of drug resistance in bacteria. Two 10-23 mono-DNAzymes (Dz1, Dz2) and a di-DNAzyme (Dz1-2) targeted to beta-lactamase mRNA were designed to determine to what degree the growth of ampicillin-resistant bacteria (TEM-1, TEM-3) was inhibited. All three DNAzymes can play a role both in vitro and in vivo. In vitro, they exhibited high catalytic efficiency (kcat/KM) of 63.5, 91.1, and 30.8 pM(-1) min(-1), respectively, under multiple-turnover conditions. In vivo, after 9 hours' incubation, the degree of inhibition of Dz1, Dz2, and Dz1-2 for TEM-1 bacteria was 27.2%, 39.6%, and 57.7%, respectively, and that for TEM-3 bacteria was 39.1%, 44%, and 62.6%, respectively. Dz1-2 showed the greatest inhibiting effect, demonstrating in vivo activity may be increased by constructing multiple-target DNAzymes. The results indicated a potential possibility for DNAzymes to act as a new type of antibacterial or a tool of gene functional analysis for prokaryocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1089/1545457041526308DOI Listing

Publication Analysis

Top Keywords

ampicillin-resistant bacteria
8
targeted beta-lactamase
8
beta-lactamase mrna
8
dz1 dz2
8
bacteria
5
inhibition ampicillin-resistant
4
bacteria novel
4
novel mono-dnazymes
4
mono-dnazymes di-dnazyme
4
di-dnazyme targeted
4

Similar Publications

Competition among bacteria for carbohydrates is pivotal for colonization resistance (CR). However, the impact of Western-style diets on CR remains unclear. Here we show how the competition between Klebsiella oxytoca and Klebsiella pneumoniae is modulated by consuming one of three Western-style diets characterized by high-starch, high-sucrose, or high-fat/high-sucrose content.

View Article and Find Full Text PDF

Purpose: We designed and tested a point of care test panel to detect E.coli and antibiotic susceptibility in urine samples from patients at the point of care in the urological department. The aim of this approach is to facilitate choosing an appropriate antibiotic for urinary tract infections (UTI) at first presentation in the context of increasing antibiotic resistance in uropathogens worldwide.

View Article and Find Full Text PDF

Salmonella enterica is a common foodborne pathogen that causes intestinal illness varying from mild gastroenteritis to life-threatening systemic infections. The frequency of outbreaks due to multidrug-resistant Salmonella has been increased in the past few years with increasing numbers of annual deaths. Therefore, new strategies to control the spread of antimicrobial resistance are required.

View Article and Find Full Text PDF

Background: Otitis media is among the leading causes of illnesses responsible for causing hearing problems and adding significant costs to the public health system. Bacteria are the most common causative agents for otitis media. Currently, there is little information on the prevalence and antimicrobial susceptibility patterns of pathogenic bacterial isolates from patients with otitis media in Ethiopia.

View Article and Find Full Text PDF

The changing epidemiological profile of invasive infections (IIHi) is noted in the post-vaccination era. The aim of this study was to characterize phenotypically and genotypically invasive (Hi) isolates detected in Tunisian pediatric patients. A retrospective study was conducted in the microbiology laboratory of the Children's Hospital of Tunis over ten years (2013-2023).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!