Monosialoganglioside (GM1) is a neuroprotective agent that has been reported to scavenge free radicals generated during reperfusion and to protect receptors and enzymes from oxidative damage. However, only a few studies have attempted to investigate the effects of GM1 on enzymatic antioxidant defenses of the brain. In the present study, we evaluate the effects of the systemic administration of GM1 on the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), and on spontaneous chemiluminescence and total radical-trapping potential (TRAP) in cerebral cortex of rats ex vivo. The effects of GM1 on CAT activity and spontaneous chemiluminescence in vitro were also determined. Animals received two injections of GM1 (50 mg/kg, i.p.) or saline (0.85% NaCl, i.p.) spaced 24 h apart. Thirty minutes after the second injection the animals were sacrificed and enzyme activities and spontaneous chemiluminescence and TRAP were measured in cell-free homogenates. GM1 administration reduced spontaneous chemiluminescence and increased catalase activity ex vivo, but had no effect on TRAP, SOD or GSH-Px activities. GM1, at high concentrations, reduced CATactivity in vitro. We suggest that the antioxidant activity of GM1 ganglioside in the cerebral cortex may be due to an increased catalase activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/1071576042000209835 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, PR China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China.
Sci Rep
January 2025
Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, Warsaw, 02-668, Poland.
This paper is devoted to the investigation of the plasmonic effect of metal nanoparticles (NPs) formed on the surface of the YAG: Bi, Ce, Yb phosphors in a temperature range between 4 and 300 K. Combination of a thin conversion layer with silver plasmonic nanostructures leads to increase of sensitizer absorption and emission efficiency. Enhancement of Bi luminescence in YAG epitaxial films with Ag NPs was observed upon cooling the samples below 200 K.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
Oxide materials with a non-centrosymmetric structure exhibit bulk photovoltaic effect (BPVE) but with a low cell efficiency. Over the past few years, relatively larger BPVE coefficients have been reported for two-dimensional (2D) layers and stacks with asymmety-induced spontaneous polarization. Here, we report a crucial breakthrough in boosting the BPVE in 3R-MoS by adopting edge contact (EC) geometry using bismuth semimetal electrode.
View Article and Find Full Text PDFRes Vet Sci
February 2025
Division of Pathology, GADVASU, Ludhiana, Punjab 141012, India.
Aim: The interlacing interaction between proto-oncoproteins and tumor-suppressing proteins in malignant canine mammary tumors (mCMT) microenvironment remains largely unexplored. The present study intended to decipher the i) association between the intratumoral expression of ERα, HER-2, pan-RAS, p53 and aromatase, ii) their relationship with the clinicohistological parameters and serum sex hormones, and iii) their prognostic relevance in mCMT.
Materials And Methods: Tumor samples from animals with mCMT (n = 27) were subjected to histopathology and immunohistochemistry for ERα, HER-2, pan-RAS, p53, and aromatase.
Nanoscale
December 2024
Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
As a nonlinear optical phenomenon, upconversion (UC) occurs when two or more low-energy excitation photons are sequentially absorbed and emitted. Upconversion nanomaterials exhibit superior photostability, non-invasiveness, a unique near-infrared anti-Stokes shift, and enhanced tissue penetration capability. However, general upconversion nanomaterials typically utilize visible light (400-700 nm) for excitation, leading to limited tissue penetration, background signal interference, limited excitation efficiency and imaging quality issues due to tissue absorption and scattering.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!