Sulfotransferases: structure, mechanism, biological activity, inhibition, and synthetic utility.

Angew Chem Int Ed Engl

Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.

Published: July 2004

The sulfonation (also known as sulfurylation) of biomolecules has long been known to take place in a variety of organisms, from prokaryotes to multicellular species, and new biological functions continue to be uncovered in connection with this important transformation. Early studies of sulfotransferases (STs), the enzymes that catalyze sulfonation, focused primarily on the cytosolic STs, which are involved in detoxification, hormone regulation, and drug metabolism. Although known to exist, the membrane-associated STs were not studied as extensively until more recently. Involved in the sulfonation of complex carbohydrates and proteins, they have emerged as central players in a number of molecular-recognition events and biochemical signaling pathways. STs have also been implicated in many pathophysiological processes. As a result, much interest in the complex roles of STs and in their targeting for therapeutic intervention has been generated. Progress in the elucidation of the structures and mechanisms of sulfotransferases, as well as their biological activity, inhibition, and synthetic utility, are discussed in this Review.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.200300631DOI Listing

Publication Analysis

Top Keywords

biological activity
8
activity inhibition
8
inhibition synthetic
8
synthetic utility
8
sts
5
sulfotransferases structure
4
structure mechanism
4
mechanism biological
4
utility sulfonation
4
sulfonation sulfurylation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!