Primary hyperparathyroidism may occur as part of hereditary syndromes, including multiple endocrine neoplasia types 1 and 2A (MEN1 and MEN2A), hyperparathyroidism-jaw tumor syndrome, and the familial isolated hyperparathyroidism (FIHP). It is unclear whether FIHP corresponds to a different genetic entity or a variant of MEN1 (or hyperparathyroidism-jaw tumor syndrome). We report a patient and 11 family members with FIHP in whom we identified a heterozygous G-to-A mutation at nucleotide 7361 of tumor suppressor MEN1 gene. This mutation is located in the first base of intron 9 (IVS9 + 1 G>A). All the family members with hyperparathyroidism were heterozygous for the intronic mutation. In vitro studies were performed in COS cells transfected with minigenes carrying the coding regions spanning exon-intron 9 and 10 with the mutant and the wild-type sequences. RT-PCR analyses showed an abnormal mRNA of greater size (829 bp) in the mutated MEN1 gene than the normal transcript (629 bp). The longer PCR product includes the exon 9, the unspliced intron 9, and part of exon 10. RT-PCR of MEN1 mRNA from patient's blood confirmed the existence of unspliced intron 9 in mature mRNA. In summary, we report a case of FIHP associated with a new intronic heterozygous germline mutation (IVS9 + 1 G>A) of MEN1 gene. This mutation produces an aberrant splicing of mRNA that could lead to a truncated protein, without activity, explaining the clinical picture of this patient and his family.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/jc.2003-032101 | DOI Listing |
Ann Endocrinol (Paris)
January 2025
Univ. Lille, Inserm, CHU Lille, U1286 - Infinite, F-59045 Lille Cedex, Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille, France. Electronic address:
Around 10% of cases of primary hyperparathyroidism are thought to be genetic in origin, some of which are part of a syndromic form such as multiple endocrine neoplasia types 1, 2A or 4 or hyperparathyroidism-jaw tumor syndrome, while the remainder are cases of isolated familial primary hyperparathyroidism. Recognition of these genetic forms is important to ensure appropriate management according to the gene and type of variant involved, but screening for a genetic cause is not justified in all patients presenting primary hyperparathyroidism. The indications for genetic analysis have made it possible to propose a decision tree that takes into account whether the presentation is familial or sporadic, syndromic or isolated, patient age, and histopathological type of parathyroid lesion.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China; State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, P.R. China. Electronic address:
Menin is a scaffold protein encoded by the Men1 gene, and it interacts with a variety of chromatin regulators to activate or repress cellular processes. The potential importance of menin in immune regulation remains unclear. Here, we report that myeloid deletion of Men1 results in the development of spontaneous pulmonary alveolar proteinosis (PAP).
View Article and Find Full Text PDFCancers (Basel)
January 2025
Hematology Unit, S. Eugenio Hospital (ASL Roma 2), 00122 Rome, Italy.
Menin (MEN1) is a well-recognized powerful tumor promoter in acute leukemias (AL) with KMT2A rearrangements (KMT2Ar, also known as MLL) and mutant nucleophosmin 1 (NPM1m) acute myeloid leukemia (AML). MEN1 is essential for sustaining leukemic transformation due to its interaction with wild-type KMT2A and KMT2A fusion proteins, leading to the dysregulation of KMT2A target genes. MEN1 inhibitors (MIs), such as revumenib, ziftomenib, and other active small molecules, represent a promising new class of therapies currently under clinical development.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
January 2025
Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892.
Establishing genotype-phenotype correlations in disorders of hereditary endocrine neoplasia is important for clinical screening, genetic counseling, prognostication, surveillance, and surgical strategy, and may also provide clues about disease pathogenesis. Important genotype-phenotype correlations are recognized, for example, in pheochromocytoma/paraganglioma and multiple endocrine neoplasia type 2A. The presence of such correlations has been less clear in other familial endocrine disorders associated with primary hyperparathyroidism including multiple endocrine neoplasia type 1 (MEN1), and the hyperparathyroidism-jaw tumor syndrome (HPT-JT).
View Article and Find Full Text PDFRev Med Chil
June 2024
Departamento de endocrinología, Hospital Clínico San Borja Arriarán, Santiago, Chile.
Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominant disease with an estimated prevalence of 2 per 100,000. This disease is caused by a mutation in the tumor suppressor gene MEN1, which is located on chromosome 11 and codifies the menin protein. It is characterized by a predisposition of parathyroids, enteropancreatic, and anterior pituitary tumors, affecting the quality of life and lifespan of those who have the disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!